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1 Introduction

1.1 Motivation and Objectives

Sport exercises are a common part of diverse medical therapies. The correct execution
of those exercises is essential for the healing process and therefore the success of such
therapies. Frequently supervising the execution of exercises is an important but also a
time-consuming task for therapists. If patients have to perform exercises at home they are
probably not supervised by a therapist anymore and must review the execution on their
own. Therefore, automating the supervision process could benefit not only therapists but
also treated patients.
In order to make assumptions about a patients or trainees performance during the execution
of sport exercises a potential software should be capable of solving different problems.
Each performed exercise including multiple repetitions must be split into subsequences
of single iterations of that exercise in order to be able to rate each repetition individually.
Furthermore, the type of the performed exercise should be automatically identified.
Performing the segmentation, identification and supervision tasks for sport exercise motion
sequences requires high-quality motion tracking data. Motion tracking software improved
in recent years [8] [16] due to artificial intelligence research, available Human Pose datasets
[4] [25] [44] and increased computational power to perform motion tracking tasks in
realtime or near-realtime.

A procedure of software performing the tasks stated above should be:
(1) Receive 3-D motion tracking data of a patient performing a set of exercises.
(2) Use the positional data to determine joint angles as a description of the tracked pose.
(3) Segment the calculated joint angle sequences into single iterations.
(4) Identify the type of exercise.
(5) Rate the execution performance for each iteration of the executed exercise.

5



1 Introduction

Figure 1.1: A basic software procedure illustrating the tasks of this work. 1-5 indicate the
step in the procedure. A, B and C mark the corresponding main objectives of
the thesis. Skeleton figures image source: [45, p. 2]. Human planes of motion
image source: [51]

The described example procedure can also be seen in Figure 1.1.
To realize segmentation, identification and rating of exercises performed by patients, several
problems must be solved. One problem in this context is the uniqueness of the human body.
Humans differ in size and figure which complicates the process of comparing exercises of
two different individual people. Additionally, the posture, range of motion and fitness level
differs from person to person. This especially applies to very old people or people that are
handicapped by injuries. Consequently, the definition of a correct exercise execution might
vary for people with different body conditions.
Another problem is that even if a set of a type of exercise is already segmented into single
iterations, the execution of each iteration might have been done at a different pace. But
primarily the time of execution might vary considerably when comparing iterations done
by different people.

After all, the objectives of this work can be summed up by naming four primary contribu-
tions:
(A) Generating single iteration subsequences from motion sequences that include multiple
repetitions of a sport exercise.
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1.2 Research Context

(B) Matching motion sequences by determining their aligned distance to each other.
(C) Automatically rating the execution performance of sport exercises.
(D) Creating a 3-D motion sequence dataset of sport exercises.

1.2 Research Context

The research of this work is embedded in the BewARe [21] research project of the Beuth
University of Applied Sciences. BewARe is an interdisciplinary research project including
computer scientists, engineers and physiotherapists and aims to increase sport exercise-
based therapies for hypertension patients. The goal is to develop a sensor-based Augmented
Reality (AR) system that uses gamification elements to motivate elderly people to perform
exercises as part of medical therapy. Based on acquired sensor data, the system adapts to
the specific needs of users to optimize the individual training program. Additionally, the
sensor data is used for instant user feedback while performing exercises in order to correct
wrong executions and prevent possible negative effects and injuries.

The main focus of this thesis is to use depth sensor data to analyse performed exer-
cises in order to gather information about the number of performed iterations and the
correctness of each execution.

1.2.1 Project Conditions

In this section, the BewARe project conditions which influence this thesis are presented.

Depth Sensor Input
The depth sensor input is recorded by an Intel RealSense D435 and Intel RealSense
D435i 1 camera.

Human Pose Estimation Input
Human joint positions are estimated from depth camera input by a software that uses
the Nuitrack SDK 2.

1https://www.intelrealsense.com/depth-camera-d435/
2https://nuitrack.com/

7



1 Introduction

Exercises execution reference
The optimal execution of exercises is defined by medical human joint angles of the
starting positions and end positions. A document stating such predefined exercises
can be found on the attached data storage under BewARe_exercise_concepts.pdf. The
document is written in german language.

1.3 Structure

The thesis is structured into six main chapters focussing on different aspects. This first
chapter introduces the requirements, tasks and challenges of this work and outlines the
motivation to solve them. In the second chapter, relevant and related work to the defined
main objectives, Subsequencing Motion Sequences, Matching Motion Sequences and Rating
Execution of Exercises is presented. After that, the approaches and challenges dealing
with the main objectives are described in the main part of this work. Further, parts of the
implemented prototype code are presented and explained. The fifth chapter then deals with
the evaluation and presents the developed results. Lastly, the work will be concluded by
discussing the contributions and results of chosen approaches and finally mention potential
future work.
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2 Related Work and Fundamentals

This chapter presents related work to the objectives of this thesis. First, methods and
approaches to compute clinical meaningful human joint angles from motion tracking data
will be introduced. Then, different approaches and domains to identify subsequences are
briefly explained. Furthermore, motion matching, primarily using the Dynamic Time
Warping (DTW) algorithm is introduced. Moreover, different approaches in former research
of automatic exercise performance evaluations are explained.

2.1 Calculating Human Joint Angles

Calculating human joint angles from 3-D joint position data is a complicated task since
"there are joints, such as the shoulder, for which there is no single definition of a joint
angle that is anatomically meaningful for the full range of motion of the joint" [35, p. 50].
However, two approaches are frequently used to describe complex joint motions in an
anatomical meaningful manner. One method uses Euler-Cardan angles which describe one
rotation matrix interpreted as the matrix product of three sequential rotation matrices about
three axes. [19] The other method is called Joint Coordinate System (JCS) and has been
proposed by Grood and Suntay in 1983 [15]. The paper claims that the JCS method does
not depend on a particular rotation sequence, which has been disproved by MacWilliams
and Davis in [26]. Their work proves that the JCS method is always equivalent to the
Euler-Cardan method for a particular sequence. Apart from the two mentioned methods,
Helical Angles and Quaternions are also frequently used as representation for body part
orientations as they are computationally robust. However, these methods are considered to
not allow deriving clinically meaningful angles [47, p. 218]. As a consequence to their
clinical meaninglessness, Helical Angles and Quaternions are not further investigated in
this thesis.
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Further, the medical joint angle definitions will be explained as well as the methods to
describe relative human joint positions technically, aiming to express as close to the clinical
definitions as possible.

2.1.1 Clinical Angle Definitions

Figure 2.1: Anatomical planes of motion and
anatomical position for humans.
[51]

Figure 2.2: Rotation axes for clinical
definitions of shoulder joint
movements: (1) transverse
axis, (2) sagittal axis, (3) ver-
tical axis and (4) internal/ex-
ternal rotation axis. [17, p.
3]

Clinical joint positions are commonly described by four particular joint angles that represent
a movement on a corresponding plane.
The flexion and extension angle represents movement on the sagittal plane. The movement

is called flexion when the body part moves to the front or extension when it moves back.
This rotation might also be described as a rotation about the transverse axis or horizontal
axis which is a vector that points sideways with respect to the reviewed joint. The transverse
axis is perpendicular to the sagittal plane whose origin lies in the center of the reviewed
joint. The axis marked with number one (1) in Figure 2.2 displays the transverse axis for
the shoulder. Figure 2.3 shows an Extension of 50 degrees on the left and a Flexion of 90
degrees on the right side. [17]
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2.1 Calculating Human Joint Angles

Figure 2.3: (a) 50° extension and (b) 90° flexion example for the right shoulder joint

[17, p. 5]

Figure 2.4: (a) 0° abduction, (b) 60° abduction, (c) 120° abduction and (d) 180° abduction
for the right shoulder joint

[17, p. 7]

The abduction and adduction angle represents movement on the frontal plane or coronal
plane. The movement is called an abduction when the body part moves away from the
related fixed body or adduction when it moves to the body. This rotation might also be
described as a rotation about the sagittal axis which is a frontal or backwards pointing
vector with respect to the reviewed joint. The sagittal axis, which is also called the
antero-posterior axis, is a perpendicular of the frontal plane whose origin lies in the center
of the reviewed joint. The axis marked with number two (2) in Figure 2.2 displays the

11



2 Related Work and Fundamentals

Figure 2.5: 30° adduction for the right shoulder joint

[17, p. 5]

Figure 2.6: (a) 80° horizontal flexion, (b) 0° horizontal flexion and (c) 30° horizontal
extension of the right shoulder

[17, p. 11]

sagittal axis for the shoulder. Figure 2.4 shows key frames of an abduction sequence
example for the right shoulder. Figure 2.5 shows an example for a 30 degrees adduction of
the right shoulder. [17]
The horizontal flexion and horizontal extension or horizontal abduction and horizontal
adduction describe the same joint movement. It represents a movement on the horizontal
plane that is running through the intersection of the frontal and sagittal plane. This
rotation might also be described as rotation about the vertical axis which is an upwards
or downwards pointing vector. The vertical axis is perpendicular to the horizontal plane
whose origin lies in the center of the reviewed joint. The axis number three in Figure 2.2
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2.1 Calculating Human Joint Angles

Figure 2.7: (a) 0°-30° internal rotation and (b) 30° external rotation. [17, p. 9]

displays the vertical axis for the shoulder. Figure 2.6 shows an example of horizontal
flexion and horizontal extension. Person a in the picture displays zero degrees horizontal
movement. Person b displays a 140 degrees horizontal flexion and person c shows a 30
degrees horizontal extension. [17]
The internal rotation and external rotation angle represent a rotation about an axis that
connects the fixed joint and a corresponding free joint. In case of an internal/external
rotation of the shoulder, these joints are the shoulder itself and the elbow. The movement
is called an internal rotation when the body part rotates to the related body or external
rotation when it rotates away from the body. The axis marked with number four (4) in
Figure 2.2 displays the internal/external rotation axis for the shoulder. Figure 2.7 shows
three different internal/external rotations of the left shoulder. Person a displays a 30
degrees internal rotation or the backward movement from 30 degrees internal rotation
to zero degrees as indicated by the double-sided arrow. Person b shows an 80 degrees
external rotation. [17]
Figure 2.1 shows the anatomical planes of motion described in the previous paragraphs
as well as the anatomical position of human beings. The anatomical position is the one
position where all clinical joint angles equal zero degrees. It is used as a reference when
describing body parts in relation to each other. [42]

When computing joint angles from tracked motion data, it is required to transfer them to
the medical definitions explained above. Clinical definitions of the presented motions are
measured independently from each other in 2-D space, which does not allow to reliably
break down clinical flexion/extension, abduction/adduction and external/internal rotation
angles from 3-D human poses. Since the results for those clinical angles depend on the
order of rotations, it is for example not possible to determine whether the movement was a
flexion followed by an abduction or an abduction followed by a flexion. [5, chapter 8.1]
[49, chapter 2.4]
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2.1.2 Euler and Cardan Angles

Euler-Cardan angles are frequently utilised to describe joint movements close to their
clinical definitions as explained in section 2.1.1. Generally, Euler-Cardan angles can be
used to describe the orientation of an object in relation to a fixed coordinate system in
three-dimensional space. In other words, they describe the orientation of a moving Local
Coordinate System (LCS) relative to a fixed Global Coordinate System (GCS). [35, p. 50
ff.] Euler angles can describe a change of orientation as a sequence of three consecutive
rotations. These rotations are defined as rotation matrices which can be seen in equation
2.2. [35, p. 51 ff]

In three dimensional space, twelve possible Euler-Cardan rotation sequences exist: XYZ,
XZY, YXZ, YZX, ZXY, ZYX, XYX, ZYZ, ZXZ, YXY, XZX, YZY. [32] The first six sequences
are also referred to as Cardan angles or Tait-Bryan angles and the last six sequences are
also called proper Euler angles. [3] [11]
Each sequence of single rotations results in a different rotation matrix that is computed by
the matrix product of those single rotations and represents a rotation about an unknown
arbitrary axis. Equation 2.1 shows how to calculate the rotation matrix R for the Cardan
sequence XYZ. Equation 2.3 shows the resulting rotation matrix R which is also called
the decomposition matrix. Alpha (α) represents the angle for the first rotation about axis
X. Beta (β) represents the angle for the second rotation about axis Y. Lastly, Gamma (γ)
represents the angle for the third rotation about axis Z. The angles can be obtained directly
from the rotation matrix R. Alpha (α) is computed from the elements (3,2) and (3,3) as
seen in equation 2.4. Beta (β) is computed from the elements (1,1), (2,2) and (3,1) as seen
in equation 2.5. Gamma (γ) is computed from the elements (2,1) and (1,1) as seen in
equation 2.6. [35, p. 51 ff.]

R = RxRyRz (2.1)

where

Rx =


1 0 0
0 cosα sinα
0 − sinα cosα

 Ry =


cos β 0 − sin β

0 1 0
sin β 0 cos β

 Rz =


cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 (2.2)
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R =


cos γ cos β cos γ sin β sinα + sin γ cosα sin γ sinα − cos γ sin β cosα
− sin γ cos β cosα cos γ − sin γ sin β sinα sin γ sin β cosα + cos γ sinα

sin β − cos β sinα cos β cosα

 (2.3)

α = tan−1
(
−R32

R33

)
(2.4)

β = tan−1 ©«
R31√

R2
11 + R2

21

ª®®¬ (2.5)

γ = tan−1
(
−R21

R11

)
(2.6)

The most widely used Euler-Cardan sequence to determine clinically meaningful joint
angles is XYZ, which is also called a Cardan sequence as described in the previous paragraph.
If the XYZ sequence is used, it is important to define the Euclidean Coordinate System of
the moving joint correctly. [35, p. 50 ff.]

Euler angles have a significant problem when using them to derive clinical meaningful
angles from joint positions, which is the Gimbal Lock. A Gimbal Lock occurs when the
second rotation of an Euler sequence is of 90 degrees because this leads to the first and
third rotation axes being aligned to each other. Thus one of the three degrees of freedom
(DOF) is eliminated as rotations about the first and third axes become equivalent to each
other, which results in meaningless angles. [35, p. 53]
A general problem when computing ball joint angles for hip and shoulder is that the order
of joint movements can not surely be determined. Clinical definitions of flexion/extension
and abduction/adduction are only defined in 2-D and not consistent in 3-D space. This
leads to differences because it is impossible to find out which action occurred first and
which second. Thus leading to different results. [5, chapter 8.1] [49, chapter 2.4]
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2 Related Work and Fundamentals

Euler angles are not used in this work, although their properties would theoretically
allow it. Given the Gimbal Lock problem and sequence differences for joints with a high
range of freedom as the shoulder, Euler-Cardan angles are not a perfect general solution to
represent joint angles The given circumstances in this work allow a simpler method using
spherical coordinates to determine flexion/extension and abduction/adduction angles that
are close to their clinical definition.
One reason is that minor joint movements as abduction/adduction or internal/external
rotation for joints like elbow or knee are ignored because the range of motion is very
limited in most cases. It is assumed that they do not have a significant impact when
evaluating sport exercises or analyzing human poses in a more general manner. Thus
only the flexion/extension angle will be used for those joints which removes the necessity
of complex rotation sequences. The only joints used in this work for which a single
angle calculation is not viable are the hip and shoulder joints. These joints, especially
the shoulder, still cause several challenges and problems that are not solved by using
Euler-Cardan angles. Another reason to simplify the angle calculations is that the current
input data does not allow to derive the orientation of body parts. Thus the internal/external
rotation of hip and shoulder is not defined for several poses and will be ignored. So as
Euler-Cardan angles do represent a generally safe and reliable method to compute all joint
angles without significant problems, it has been decided to choose an easier method as
long as the given circumstances remain.
Nevertheless, Euler angles played an important role to understand the challenges when
calculating joint angles of complex motions in 3-D space. Most of all they helped to
generally understand movements of ball joints and the challenges finding a standard method
to compute clinical meaningful joint angles.

2.1.3 Joint Coordinate System

Grood and Suntay developed the JCS Method to describe three-dimensional joint motions
as closely as possible to clinical definitions. In their work, a JCS is applied to the knee
joint but it is even recommended to use the method for arbitrary joint motion descriptions.
Generally, a JCS can be described as a three-dimensional Euclidean coordinate system
whose origin lies in the center of rotation. Two of its three axes are called fixed axes
because they are established by using other body part positions, thus they are fixed to the
body. The third axis is called the floating axis or free axis because it is not directly attached
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2.1 Calculating Human Joint Angles

to some body part, but the calculated perpendicular of the fixed axes. In [15], a rotation
about one of these axes represents a single medical joint movement. So a rotation about
one axis represents a clinical abduction and adduction, another axis represents a flexion
and extension and the last axis represents an internal rotation and external rotation. In
their work [15], Grood and Suntay claim that their method is an improvement compared to
the frequently used Euler-Cardan angles because it is independent to a rotation sequence.
But in [26] it has been explained and proofed that the JCS Method described in [15] is
always equivalent to at least one of the twelve Euler-Cardan sequences since the choice of
axes in a JCS already imposes a rotation sequence.

In 2002 and 2005 the International Society of Biomechanics (ISB) released recom-
mendations for the construction of JCS to measure human joint angles. The proposed set
of different JCS are based on Grood and Suntay’s work [15] and a proposal for reporting
kinematic data by Wu and Cavanagh from 1995 [48]. The ISB’s motivation was to improve
communication and the exchange of research results among researchers and clinicians. The
Standardization and Terminology Committee (STC) involved nearly 30 experts in joint
biomechanics to develop proposals for several joints of the human body. [50][49]
The most interesting of the proposed JCSs for human joints for this work are those for
shoulder and hip since they are ball joints and have three DOF which makes them hard
to measure and translate into clinical definitions. As the orientation of extremities is
controlled by them, they play an important role in a lot of sport exercises.
The ISB offers two different options to define axes of a JCS for shoulder joints. The first
option places the coordinate systems origin to the estimated position of the Glenohumeral
rotation center which is further simplified as the shoulder joint. The Z-axis represents the
line connecting the shoulder joint and the center of the most caudal point on the lateral
epicondyle and medial epicondyle which is further simplified as the elbow joint. Z-axis
must point to the right for the right shoulder and left for the left shoulder. The X-axis is
defined by the perpendicular to the plane formed by the shoulder joint and the lateral and
medial epicondyle pointing forward. Lastly, the Z-axis is defined by the perpendicular line
to the Y-axis and Z-axis. The second option differs only in the Z-axis definition. It utilizes
the Y-axis of the corresponding elbow JCS which is defined by the line perpendicular to
the plane constructed from the elbow joints position, the most caudal-lateral point on the
radial styloid and the most caudal-medial point on the ulnar styloid pointing forward. [49]

Both recommendations of [49] can not be used in this work because of missing po-
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sitional information. The first option is not usable as positions of the lateral and medial
epicondyle are not available from motion tracking input data. As a result, the alignment of
the Z-axis can not be determined. The second option can not be used because of missing
positional information about the radial and ulnar styloid that is needed to construct a JCS
for the elbow joint, whose Y-axis is utilized to construct the Z-axis for the shoulder joint
JCS. Similarly, the hips joints JCS proposal from [50] can not be used in this work as
positional information about the anterior superior iliac spine, posterior superior iliac spine
and femoral epicondyle are missing. Therefore, a different shoulder and hip JCS from the
recommondations of [49], which can be constructed from three-dimensional joint positions
available from motion tracking data input will be defined later in this work.
Now that related work and accompanied challenges regarding joint angles have been intro-
duced, the next section follows, dealing with the subsequencing of motion sequences.

2.2 Subsequencing Motion Sequences

Subsequencing of motion sequences have been researched in order to solve problems in
various contexts. But mostly to either retrieve motion sequences from a database by a given
query sequence or to improve synthesising motion sequences based on other sequences
or parts of them. Generally, the subsequencing process is referred to as indexing, as the
classification of such subsequences for easier retrieval and therefore time-saving in various
practical use-cases is the main motivation. [18]
Keogh et al. used a lower bounding distance and uniform scaling approach in [18] to retrieve
motion sequences, whose first frames are similar to the end frames of other sequences.
Targeting to improve the process of concatenating small sequences to produce a longer,
complex sequence. Like for example a martial arts sequence of a punch, followed by a kick,
followed by a jumping kick. Where the punch, kick and jumping kick would be singular
sequences that allow easy concatenation because of their fitting start and end subsequences.
A more general approach is the decomposition of motions into elemental building blocks,
from which more complex motions can be constructed. In [7], the term Moveme has been
introduced. A Moveme describes a decomposed primitive motion of some elementary
action, similar to phonemes in spoken language. Del Vecchio et al. further researched the
concept of Movemes in order to create a motion alphabet of them [14].
LaViers et al. specified a grammar for ballet leg positions in [23] in order to improve
human-like robot motions of other formalised motions like human gestures or other types
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of motions, which allow human robots to better react to dynamic environments.
In [9], Chang et al. are counting repetitions of sport exercises analysing tracked accelerom-
eter data sequence graphs for repeating patterns. Das et al. also used accelerometer data of
a smartwatch in [13]. In their paper, they analyse the accelerometer sequences for peaks
and valleys which represent single iterations of the performed exercise. In [24], Li et al.
analysed an improved accelerometer signal for peaks to successfully identify repetitions in
free weight exercises.

Some of the presented papers use a general approach in order to classify and syn-
thesise motions in general, meaning motions of different domains. A goal of this thesis
is to successfully identify single iterations of performed exercises. Papers that analyse
repetitions of sport exercises mostly use a pattern or peak analysis approach. As the
context of the latter is very similar to the context of this thesis, the challenge of identifying
subsequences is approached by analysing joint angle sequences within performed exercise
sets.

Smoothing Joint Angle Sequence Data

It is common practice to filter raw input data or directly derived input data in order to
remove noise and outliers reasoned by technical or environmental inaccuracy. In 1964
Savitzky and Golay proposed a data smoothing method that is logically based on local
least-squares and polynomial approximation for single data points within longer sequences.
[38] Their method is used in so-called Savitzky-Golay-Filters in order to not only smooth
noisy data in signal processing, but also in other domains. Such filters differ in a window
size and polynomial order. Meaning the use of a polynomial order to approximate several
data points. [39]
A Savitzky-Golay filter will be used to smooth the input data for the subsequencing process,
as it is an adequate method to remove noise and outliers that appear due to inaccuracies of
the former motion tracking.
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2.3 Matching Motion Sequences

Research in determining the similarity of motion sequences has increased with the usage
of data-driven animation techniques in computer games and animated movies. [18] Using
existing motion sequences from a database as a starting point for new varieties of such
animations or in order to synthesise derived animations may reduce the production workload
extensively.

Different approaches have been developed to deal with the challenges of matching
motion sequences and the often accompanied segmentation of complex human motion
sequences that may contain various actions. Segmenting or indexing techniques, for
example used in [18], [6] and [30], are aiming to recognise small and simple movements
that can be decomposed from more complex motions. However, in the context of this
thesis, complex sequences are sequences of multiple iterations performing an exercise and
the variety in those complex sequences is rather small as they do not contain different
exercises. Thus the decomposition of such sequences is not accounted in this chapter but is
addressed in chapter 2.2.
Focussing on the pure matching of two motion sequences, the most common approaches
are different approaches of Template Matching [10] [33] [31], Hidden Markov Models [7]
[34] and Dynamic Time Warping [1] [29].
In [29, chapter 10], Mueller describes the usage of DTW for motion comparison and
retrieval. DTW is an algorithm that is widely used across different fields of research to
measure a distance of two arbitrary time series (find a detailed explanation in chapter
2.3.1). In [29, chapter 10], two different approaches to determine pose distances are pointed
out. One DTW approach utilises sequences of tracked 3-D point cloud data and the other
approach uses sequences of human joint angles in order to represent motion sequences. One
feature of the joint angle representation is that they are invariant to translations, rotations
and scalings of the whole skeleton. This can be an advantage and disadvantage at the same
time, as a motion performed in different body orientations is still considered similar, which
is desired in most cases. But in some cases, this is a disadvantage, for example, a push up
exercise is very different from motions where a person is standing and pushes the arms to
the front. But justified by the rotation invariance, both motions may be considered very
similar. [29, chapter 10] Moreover, some joint rotations might have a greater effect on the
pose of a person. As a rotation of the shoulder joint arguably has a greater impact than the
wrist angles to the pose as a whole as the complete arm is moved when the shoulder rotates
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and not just the hand. This problem is addressed by assigning weights to different joints
to control the influence of each joint angle. But the importance of particular joint angles
may also change within a sequence, depending on the current overall pose or context of
the motion. However, overall joint angles, as well as point cloud data, are viable inputs
for the DTW algorithm in order to determine a meaningful distance to distinguish motion
sequencen from each other. [29]
The DTW approach is well suited to perform a comparison between two motion sequences
of sport exercises as the algorithm handles the possible time shift between those and
calculates a distance at the same time. Therefore, DTW will be used for the matching task
in this thesis. Moreover, both types of input data that are recommended in [29, chapter 10]
are very similar to the available calculated pose describing data of this work. Chapter 2.3.1
describes the functionality of the DTW algorithm in more detail.

2.3.1 Dynamic Time Warping (DTW)

DTW is an algorithm that is used to measure the similarity of two time series, which may
vary in length. The algorithm has been originally developed and used for speech recognition
[36] but has been applied to several other applications like handwriting recognition [43],
gesture recognition [22] [12] and computer vision [28].
To measure the similarity of two time series, the DTW algorithm elastically transforms
the two time series in order to align them as optimal as possible. The alignment results in
more accurate similarity measurements by ignoring time shifts within the two time series.
The optimal alignment is represented by a warp path that has two general constraints. The
path must start at the beginning of both time series and also finish at the end of both time
series, to ensure that every index of both have been referenced in it. And secondly, the
time indices must increase monotonically to prevent the path from overlapping. The warp
path runs through a cost matrix that has an x-axis size that equals the length of time series
one and a y-axis size that equals the length of time series two. This cost matrix stores
the distances of the corresponding indices in the time series to each other. The DTW
algorithm calculates that warp path through this cost matrix, which results in the minimum
total distance, thus representing the optimal alignment of both time series following the
mentioned constraints. [37]
Figure 2.8 shows two arbitrary time series and their matched time indices that have been
determined by the DTW algorithm. Figure 2.9 shows the same time series as Figure 2.8 and
the resulting warp path running through the cost matrix, representing the optimal alignment
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Figure 2.8: Two arbitrary time series and their optimal alignment visualised by lines that
connect the matched data indices. [37, p. 1]

Figure 2.9: A cost matrix with the minimum-distance warp path of two time series. [37, p.
2]

of these time series. In this case, the optimal matching index pairs are: (1,1), (2,1), (3,1),
(4,2), (5,3), (6,4), (7,5), (8,6), (9,7), (9,8), (9,9), (9,10), (10,11), (10,12), (11,13), (12,14),
(13,15), (14,15), (15,15), (16,16). [37]
One disadvantage of the original DTW algorithm is its exponential complexity, which

limits the usage to rather small sequences. As a consequence, Salvador and Chan presented
the fastDTW algorithm in their work FastDTW: Toward Accurate Dynamic Time Warping
in Linear Time and Space [37]. The paper names three main approaches to optimise the
complexity of the original DTW algorithm. (1) Shrinking the sequences into smaller
sequences being as similar as possible to their original. (2) Finding a minimum-distance
warp path at lower resolutions in order to use that as initial input at higher resolutions.
(3) Refining the initial warp path projected from a lower resolution by applying local
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Figure 2.10: Four different resolutions of a warp path calculated by the fastDTW algorithm.
[37, p. 4]

adjustments. The described procedure is visualised in Figure 2.10, where four different
resolutions of a warping path are displayed. [37]

With the DTW and fastDTW algorithm, the matching of two similar motion sequences
could be realised, as the calculated distance of the optimal time series alignment represents
the similarity of two time series. Based on that fact, it might be possible to identify the type
of a particular exercise by comparing it to different ground-truth sequences of different
types of exercises.

2.4 Rating Execution of Exercises

Automatically rating the execution of exercises has gained interest with increasing quality
of motion tracking possibilities. Some approaches use so-called gold-standards, which are
ground-truth motion sequences. Those are used to evaluate the trainees performance by
comparing them to the trainees motion. [2] [41] Others use predefined rulesets for a direct
comparison and performance evaluation [52] or determine exhaustion levels of trainees in
order to guide them during the exercise [13].
In [13], Das et al. calculate an Ease Factor, which represents how comfortable a trainee is
performing an exercise variation by determining the variance in execution speed. Addition-
ally, a trainee’s Comfort Factor is calculated utilising a relation between heart rate variance
and hand tremor.
In [2], an evaluation of dancing performances is done comparing tracked sequences to a
defined gold-standard. In order to determine the choreography score, joint velocity vectors
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and spatial joint positions are utilised.
In 2013, Su developed a Kinect-based system in [41], that determines the quality of
rehabilitation exercise performances. In the paper, a gold-standard approach that uses
personalised recorded exercise executions of a guiding physician is used. Patients’ exercise
performances are evaluated against the physicians recorded gold-standard in order to
determine the quality of execution. To achieve that, a trajectory path and speed variation
distance are determined using the DTW algorithm.
In [52], Zhao et al. also designed and implemented a Kinect-based system to guide users
while performing rehabilitation exercises. The approach is based on a rule set for each
exercise that defines certain key angles and bone orientations that represent a correct
execution of the respective exercise. The software will then give guidance to the trainee,
depending on the comparison results of the tracked execution to the defined ruleset.

Two general approaches to evaluate exercise performances are promising and suit the
context and requirements of this thesis well. On the one hand, predefined rulesets for each
particular exercise may be able to give high-quality exercise performance feedback back
to the user. Based on such predefined rules, a system could guide a user very accurately,
respecting each rule separately. On the other hand, matching tracked trainee sequences to a
ground-truth standard may also be suited to evaluate the trainees performance. Personalized
guidance with this approach could be better, as a trainer or physician is able to personalize
the ground-truth definition of exercises for each user by tracking the gold-standard together
with them as done in [41].
The project context of this thesis allows defining rulesets based on predefined joint angles
for start and end positions of exercises (see chapter 1.2). Apart from that, the comparison of
a motion sequence to a ground-truth standard is already being researched by approaching the
matching challenge of this thesis (contribution (B) in chapter 1.1). Given these conditions,
both approaches will be examined in this thesis in order to determine the quality of exercise
executions.

2.5 Summary

This chapter introduces research and standardisation approaches to calculate medically
meaningful joint angles as they are utilised for pose and motion representations and used
to solve all the main challenges of this thesis defined in chapter 1.1. It also gives a brief
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introduction to former research approaches related to these main contributions. Starting
with different contributions regarding subsequencing and indexing for motion sequences,
followed by motion matching approaches with a focus on Dynamic Time Warping and
lastly presenting recent research that aims to automatically rate the execution of exercises.
The research showed, that the tasks of this thesis are not only subject to computer vision
challenges but moreover challenges across different fields of research like for example
medicine, biomechanics, robotics and signal processing.
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In this chapter, the main part of this thesis is presented. Therefore, chosen approaches in
order to solve the main challenges of this work are explained in detail.
First, the acquisition and representation of used input data is introduced. Explaining
the creation of a labled dataset of exercise motion sequences as well as defining the
representation of motion sequences and exercises in the context of this thesis.
Subsequently, the approach of human joint angle calculations is presented. Including the
transformation from a GCS to a JCS and the angle calculations for ball joints and non-ball
joints utilising spherical coordinates. The calculated joint angles lie the foundation for the
approaches that handle the challenges of the main objectives, as they are used as input data,
directly derived from 3-D position data of sequence representations.
Afterward, the subsequencing approach is explained along with examples for each part of the
process. This includes the identification of local extrema in prioritised joint angle sequences
and subsequent filters that lead to the identification of single iteration subsequences in
motion sequences of exercise sets.
The next section deals with the subject of matching motion sequences based on the DTW
algorithm and Euclidean distances. Highlighting the importance of aligning the examined
sequences before determining their similarity.
Further, the two approaches to rate performed exercises will be presented. Comparing
predefined clinical target angles to the joint angles of the performing trainee on the one
hand. And deriving quality ratings from the similarity between a query sequence and a
ground-truth exercise sequence on the other hand.
Lastly, the presented approaches will be summed up and briefly put in context with each
other.
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3.1 Data Acquisition

In order to test and evaluate the methods, which are developed in this thesis, a labeled
dataset of exercise motion sequences has been created. In this chapter, the creation process
of this dataset is presented followed by definitions of motion sequences and exercises in
context of this thesis.

3.1.1 Test Dataset

The recorded test dataset to test and evaluate approaches regarding the main objectives of
this thesis contains 1546 sequence files. 1407 of those files are single iteration exercise
sequences and 139 files are sequences including ten iterations of an exercise. Resulting in
a maximum of 2797 exercise iterations. The complete dataset can be found on the attached
data storage under motion_tracking_dataset.zip.

Figure 3.1: A montage of five images displaying trainees performing exercises.

The tracking software is a Unity program that uses the Nuitrack SDK for the identification
of human body parts. The sequences have been recorded with an Intel Realsense D435 and
an Intel Realsense D435i camera simultaneously. Both cameras were placed on tripods
right next to each other and positioned in front of the test person. The positions of the
cameras have been set to a height of 85cm from the ground and a distance of 200cm to the
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Figure 3.2: A schematic illustration of the motion tracking setup described in this thesis.

test person marker. The cameras were turned by 90 degrees to record in portrait mode in
order to increase the vertical range of the viewport. The orientation of the cameras has
been set to approximately minus five respectively five degrees azimuth angle and minus
five to minus ten degrees elevation angle. The settings of the orientation were done by
hand, with the goal to cover the entire range of the trainees motion. Figure 3.2 shows a
schematic illustration of the tracking setup.
The described setup has been used to track eleven different exercises performed by eight
test person. Table 3.1 shows the distribution of sequence files and resulting iterations
across the recorded exercises. It shows how many sequence files and iterations have been
recorded for each exercise. Differences in the number of files and iterations as between
squat and triceps extensions occur due to removed sequences were tracking issues made
the sequences unusable or users that did not want or could not perform specific exercises.
Each recorded motion sequence is represented by a resulting JavaScript Object Notation
(JSON) file, which most importantly includes a list of 3-D positions of all tracked body
parts. The next section describes what is included in such output file and explains how it is
further utilised.

29



3 Methodology

Exercise No. of Sequence Files No. of Single i Seqs No. of Ten i Seqs No. of Total Iterations
biceps curl left 130 118 12 238
biceps curl right 132 120 12 240
knee lift left 134 122 12 242
knee lift right 136 124 12 244
lunge left 132 120 12 240
lunge right 132 120 12 240
overhead press 155 141 14 281
side step 173 158 15 308
squat 171 155 16 315
triceps extension left 131 119 12 239
triceps extension right 120 110 10 210
Overall 1546 1407 139 2797

Table 3.1: The number of sequence files, single-iteration-sequences, ten-iteration-
sequences and total iterations per exercise listed by exercises.

3.1.2 Motion Sequences

A motion sequence is defined by a JSON file, which consists of information about the
sequences’ name, the date of recording and most relevantly the positions of each tracked
body part for all frames of the sequence. Moreover, such sequence file contains the
timestamp for each frame of the sequence and the tracking format, which maps body
parts to indices in the 3D positions list. Listing 3.1 shows an example of a sequence file
containing only one frame. The positional information is available under the frames key.
Each list element of the frames list is a list itself and includes the 3-D positions of one
frame for each body part. It is notable, that every three values in that list represent the x, y
and z position of one body part. To assign the correct body part, the format dictionary (see
Listing 3.1 line 4-12) must be utilised. Every number value in that dictionary multiplied by
three represents the x position of the respective body part, the following two elements then
represent the y and z position.
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1 {

2 "name": "Sequence Data",

3 "date": "2019-10-24T14:33:45.4612904+02:00",

4 "format": {

5 "LeftWrist": 0,

6 "LeftElbow": 1,

7 "LeftShoulder": 2,

8 ...

9 "RightElbow": 13,

10 "RightShoulder": 14,

11 "Head": 15

12 },

13 "timestamps": [

14 1571920425462.283

15 ],

16 "frames": [

17 [

18 268.1098,46.3126831,1913.36121,

19 252.486618,335.118378,1984.90454,

20 175.214462,644.7952,1951.10229,

21 ...

22 -247.3602,360.497742,2104.1543,

23 -179.442459,661.147,2014.65271,

24 -5.89409542,867.4157,1939.42981

25 ]

26 ]

27 }

Listing 3.1: Examplary JSON file representation of a motion sequence.

In order to analyse a sequence, the body part positions for each frame are retrieved and
generalised in a preprocessing step. To utilise specific motion tracking input, a processing
function for that input must be implemented. Such processing function initialises and
returns a Sequence object instance that contains all available information of a motion
sequence in a generalised format. Furthermore, the returned instance is enhanced by
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joint angles, which are calculated from the positional information as described in 3.2.
Additionally, the object provides merge and slicing functions. The Sequence object will be
used for further steps in which the data is going to be analysed and interpreted.

3.1.3 Exercises

Exercises are defined by JSON files that contain all necessary information to analyse
motion sequences with respect to that exercise. Besides a name and a description of an
exercise, such files hold information about the target angles for all body parts and each
type of angle for these body parts. A target angle specifies, what value range of a particular
angle should be reached at the start pose and the end pose when performing the exercise.
In addition to that, each particular angle also has a priority value from 0.0 to 1.0, which
specifies the importance of that angle for an exercise. A priority of 0.0 would mean the
respective angle is of no importance at all. A priority of 1.0 means, that it is very important
and characterises that exercise. Such angles with a priority of 1.0 are also called prioritised
angles within this thesis.
As an example, the prioritised angles of a squat exercise might be the left and right hips
flexion/extension angles and the left and right knee flexion/extension angles. The target
angle ranges for these prioritised angles then could be 0 to 10 for the starting positions and
45 to 90 degrees for the end positions.
As trainees that perform an exercise might have injuries or other limitations that require
personalised target angles, the exercise JSON file also has a userId field. Consequently,
every exercise can be personalised to specific circumstances that affect the defined target
angles. As an example, listing 3.2 shows an excerpt of an exercise file describing a squat
exercise.
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1 {

2 "name": "Squat",

3 "userId": 1,

4 "description": "Lower the hips and stand back up.",

5 "angles": {

6 "start": {

7 "hip_left": {

8 "flexion_extension": {

9 "angle": [0, 10],

10 "priority": 1.0

11 },

12 "abduction_adduction": {

13 "angle": [0, 0],

14 "priority": 0.5

15 },

16 "innerrotation_outerrotation": {...},

17 },

18 "hip_right": {...},

19 ...

20 },

21 "end": {

22 "hip_left": {

23 "flexion_extension": {WW

24 "angle": [45, 90],

25 "priority": 1.0

26 },

27 "innerrotation_outerrotation": {...},

28 "abduction_adduction": {...}

29 },

30 "hip_right": {...},

31 ...

32 }

33 }

Listing 3.2: Extraction from exercise file Squat.json
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3.2 Calculating Human Joint Angles

Computing joint angles from the preprocessed input data (see section 3.1.2) involves up to
three main steps that are performed consecutively for each frame of a sequence.
For ball joints, a local Joint Coordinate System (JCS) is constructed first. After that, two
angles are computed by utilising spherical positions. Lastly, the computed angles are
interpreted and further processed for their specific usage.
The angles for non-ball joints are computed without creating a local JCS. Since only one
angle is considered relevant, the spherical positions do not have to be used. Instead, the
angle can be computed by utilizing the dot product of two vectors related to the joint.

3.2.1 Joint Coordinate System Creation

A JCS is created to perform angle calculations for ball joints which currently involves the
left and right hip and shoulder joints. The JCS is needed to get a spatially moving joint
position relative to the center of rotation. The center of rotation and origin of the JCS is
the position of the joint whose angles are going to be computed. The spatially moving
joint is a specific joint that changes its position as a result of such a rotation because it is
connected to it through a limb. In case of the right shoulder, the rotating joint would be
the right shoulder joint, the spatially moving joint would be the right elbow joint and the
connecting limb would be the upper arm.
As a consequence, the spatially moving joints’ 3-D position can be converted into spherical
coordinates with the shoulder joint position as center of the sphere. The resulting two angles
then can be adjusted to correspond to clinical flexion/extension and abduction/adduction
angles.

The general idea is to find a transformation that transforms all joint positions in such a way
that their new position is relative to the rotating joint.
Three positional 3-D positions in the Global Coordinate System (GCS) are needed to
perform this task. (1) The intended origin of the JCS, which is the position of the
rotating joint. (2) A point in the GCS that describes the orientation of the x-axis of the
JCS and is further referenced as the x-orientation-point. (3) And a point in the GCS
that describes the orientation of the y-axis of the JCS and is further referenced as the
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y-orientation-point. The final resulting JCS will be a right-handed Euclidean Coordinate
System with a x-axis pointing left, a y-axis pointing up and a z-axis pointing to the rear
from camera perspective.

Finding JCS Axes

As a first step, the x-axis direction is computed by subtracting the origin from the x-
orientation-point which results in a vector vx that starts at the origin point and ends at the
x-orientation-point.
The x-position of the 3-D vector vx points to will then be checked against zero, which is
the x-position of the origin point o, to ensure the intended direction of the x-axis. If the
GCS x-axis points to the left and vxx is positive, vx points to the left already. If vxx is
negative, vx currently points to the right and must be flipped by negating the coordinates
of vx. The same method is used to ensure the JCS y-axis to point up and the z-axis to point
away from the camera.
The second step is the computation of the z-axis direction vz. vz is a perpendicular vector
to vx and the vector from origin o to the y-orientation-point, which is only a point on the
xy-plane but not representing vy. After that, it is ensured that vz points away from the
camera.
The third step is the computation of the y-axis vy, which is a perpendicular vector to vx

and vz that is assured to point up.
The results are three vectors vx, vy and vz, which can now be used to find a transformation
to project any point from the GCS to the JCS.

Transforming Joint Positions from GCS to JCS

To transform any point from the GCS to the JCS, a transformation must be found that
results in the GCS covering the JCS.
The positional and orientational alignment is performed by three consecutive transforma-
tions. The first transformation is a translation T from the zero position vzero to the new
JCS origin o, which is computed by subtracting o from vzero.
The second transformation Rx must represent a rotation that aligns the JCS x-axis direction
vector vx to the GCS x-axis direction vector, which is being defined as [1,0,0]. To construct
the rotation matrix Rx, a rotation axis and an angle α is needed. The rotation axis is
calculated by the cross product between the normalised vx and [1,0,0] vectors, which
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represents a perpendicular vector to these two. Then the angle between vx and [1,0,0] is
calculated by the dot product of these. As a consequence, we are able to define the rotation
matrix Rx by using the Euler-Rodrigues formula [27].
The third transformation Ry must represent a rotation that aligns the JCS y-axis direction
vector vy to the GCS y-axis direction vector [0,1,0] after the x-axes have been aligned
already. Again a rotation axis and angle is needed to construct the Rotation matrix Ry.
To find the rotation angle, a matrix multiplication of vy and Rx is performed to rotate vy.
After that, the angle between Rx · vy and [0,1,0] can be determined by calculating the dot
product of them. The rotation axis will be vx as we don’t want to change any x-positions
after performing the rotation Rx.
As a result, three 4x4 transformation matrices have been determined: T , Rx and Ry. To
summarise these transformations in one 4x4 transformation matrix M , the matrix product
M = T · Rx · Ry is determined. Further, it is possible to project any point from the GCS
into the JCS by multiplying the point with the transformation matrix M .

3.2.2 Angle Calculation

This section explains how the actual joint angles are computed. Priorly it is important to
note that internal/external rotations will be ignored for all joints since the current input
data does not allow to identify the orientation of body parts without exceeding the effort of
this work.
Additionally, the range of motion for non-ball joints is simplified to one angle. Flexion/Ex-
tension is considered the only relevant motion for such joints. Since abduction/adduction
and internal/external rotation movements are uncharacteristic for non-ball joints, no
significant importance is assumed of such to solve the objectives of this thesis.

Non-Ball Joints

As explained in section 3.2, the non-ball joint flexion angles are computed by utilising the
dot product of two vectors that represent the limbs which are connected to the examined
joint. The two vectors both have their origin in the examined joint and point to another
joint that represents the end of a limb. For example, to compute the right elbow flexion
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angle, the right elbow, right wrist and right shoulder joint positions are required. The three
joint positions allow to determine a vector from elbow to shoulder and another vector from
elbow to wrist. Then the dot product of the two vectors is calculated after normalising them.
The result is the lowest angle between the vectors. To derivate a clinically meaningful
angle from that, the result in degrees is subtracted from 180. This results in degrees near
zero if the arm is straight and higher degrees if the arm is flexed, which accompanies the
clinical flexion angle definitions.

Ball Joints

As mentioned in section 2.1.2, Euler-Cardan angles are not used to compute the joint angles
for ball angles in this work. Instead, the flexion/extension and abduction/adduction angles
are determined by utilising the concept spherical coordinates.

Figure 3.3: Spherical angles representation of euclidean coordinates

[20]

The method requires the position of a spatially moving joint that is connected to the rotating
joint in the priorly constructed JCS, as explained in the first paragraph of section 3.2.1.
This allows to compute the spherical coordinates denoted as radial distance (r), elevation
angle theta (θ) and azimuth angle phi (φ) for a right-handed coordinate system as displayed
in Figure 3.3 (see eq. 3.1, 3.2, 3.3). To transfer this principle to meaningful joint angles,
the computations must be applied using other axes than displayed in the example in figure
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Figure 3.3.
Firstly, the axes of the Euclidean coordinate system must be turned by 90 degrees anti-
clockwise to represent the constructed JCS as the z-axis must point to the rear and the y-axis
must point up. After that, the computation of φ is changed to represent a rotation about the
x-axis, instead of the z-axis. The angle φ can now be interpreted as a flexion/extension
angle, which is a rotation about the transverse axis. Similarly, the angle θ is not computed
as being the elevation angle of the z-axis, but the JCS negative x-axis instead. If θ is
subtracted from 90 degrees now, the resulting angle describes the angle between a vector
pointing from origin to another point and the YZ-plane. This is suited to represent the
summarised abduction/adduction and horizontal abduction/adduction.
Without a postprocessing step, the order of rotations will always be a flexion/extension
followed by a horizontal abduction/adduction. But the resulting angles of an abduction/ad-
duction followed by a flexion can be derived from φ and θ as explained in section 3.2.3.

A minor problem of this method, similar to the Gimbal lock of Euler-Cardan angles,
is an abduction/adduction angle θ of 90 degrees. In that case, the examined point lies
exactly on the x-axis of the JCS and the rotation angle about the x-axis can not be computed
anymore. This problem is addressed by checking whether θ is of 90 degrees and if that is
the case, to set φ to 0 before the postprocessing step.

r =
√

x2 + y2 + z2 (3.1)

θ = arccos
z
r

(3.2)

φ =



arctan
( y

x

)
, if x > 0

sgn (y) π2 , if x = 0

arctan
( y

x

)
+ π, if x < 0 ∧ y ≥ 0

arctan
( y

x

)
− π, if x < 0 ∧ y < 0

(3.3)
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3.2.3 Angle Results Postprocessing

After computing azimuth angle φ and elevation angle θ and reinterpreting them as
a flexion/extension followed by an abduction/adduction as explained in section 3.2.2,
postprocessing is needed to adjust the results for a specific use-case.

Evaluation of Exercises

One use-case is the evaluation of performed exercises, based on specified joint angles for
start and end position. Assuming a target joint angle of the right shoulder should be of 180
degrees abduction for an arbitrary exercise. And if a performing person executes the exercise
perfectly, the computed flexion angle φ will be 180 degrees and the abduction/adduction
angle will be of 0 degrees. As it is impossible to determine the order of rotations the
person really did, the most likely order will be expected. Since a 180 degrees abduction
end position is specified in this example exercise, the results are also interpreted as if an
abduction has been performed first.
The postprocessing step is suited to ensure meaningful angles for both possible orders of
motion. It is adjustable to possible future requirements of clinicians without changing the
angle computations it is based on, which are clinically meaningful angles by themselves,
representing a flexion/extension followed by an abduction/adduction.

3.3 Subsequencing Motion Sequences

Identifying single iterations in motion sequences including multiple iterations of sport
exercises is one of the main goals of this thesis. In order to perform this task, calculated
joint angles of prioritised body parts for a specific exercise are analysed. The result is an
assertion about the number of single iteration subsequences and their respective frame
range within the analysed sequence. The general steps of this process are presented in the
list at the bottom of this paragraph. Then the single parts of this process are explained in
detail within the following chapters.

General steps to identify iterations in a sequence:

1. Retrieve prioritised body part joint angles for each frame of the sequence.

2. Identify local extrema in smoothed sequences of prioritised body part angles.
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3. Find iterations by comparing the identified extrema of all prioritised body parts to
each other.

3.3.1 Prioritised Body Part Angles

To identify single iterations in a sport exercise motion sequence, a list of prioritised body
part angles for a particular exercise is required. It is assumed that the prioritised body
parts provide the most meaningful information about an exercise sequence. As they are
important indicators of whether the exercise has been performed correctly or not. It is
also assumed that the prioritised body parts will be moved when performing the exercise.
Meaning that corresponding joint angles will change when moving from the specified
start position to the end position of that exercise. Other body parts might not be moved
significantly and therefore are less suited to identify start and end keyframes of single
iteration subsequences. As a consequence, only the prioritised body part angle data is used
in the process of identifying single iterations.
The information which body part angles are prioritised for a particular exercise is stored
within an exercise file as explained in chapter 3.1.3.

3.3.2 Identifying Local Extrema of Prioritised Joint Angles

After retrieving the raw data of prioritised body part angles for each frame of the examined
sequence, the joint angle values must be altered to fit the type of movement for the
corresponding exercise as explained in chapter 3.2.3.
Then, the joint angle sequences are smoothed in order to simplify the identification of
meaningful local extrema, which might later represent the start, turning or end key frames
for single iterations of the analysed exercise set.

Figure 3.4 serves for a better understanding of the following chapters. On top, it
shows graphs of the hips and knees joint angles of a trainee that performed ten iterations of
a squat exercise. The middle part of the figure shows a zoom into the first iteration of those
ten iterations. The images of the trainee at the bottom correspond to the frame numbers
their respective lines point to. The type of plot that can be seen at the top of Figure 3.4 will
be used to help further explain the process of subsequencing motion sequences.
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Figure 3.4: Graphs of prioritised body part angles of a squat exercise motion sequence for
ten iterations (top) and another plot that zooms into the first iteration (mid).
Corresponding RGB Images of the trainee while performing the exercise
(bottom) including connections to the respective frames.

Smoothing Joint Angle Data

The altered joint angle data might still be subject to strong fluctuations as they are derived
from the unfiltered motion tracking input data. As outliers and irregularities complicate the
identification of meaningful local extrema that mark a start and end frame of an iteration,
the joint angle data is smoothed by applying a Savitzky–Golay Filter (see chapter 2.2) to
each sequence of body part angles. Figure 3.5 shows four graphs that map the raw joint
angles on frames of the examined sequence for an exemplary execution of ten iterations of
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Figure 3.5: Raw prioritised joint angle data of a motion sequence that includes ten iterations
of a squat exercise.

Figure 3.6: Smoothed prioritised joint angle data of a motion sequence that includes ten
iterations of a squat exercise after applying a Savitzky-Golay filter.

a squat exercise. In contrast, Figure 3.6 shows the joint angles for the same sequence as in
Figure 3.5 after applying a Savitzky-Golay filter, where irregularities have been removed
successfully and facilitate the identification of meaningful extrema.
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Figure 3.7: Marked minima and maxima from smoothed prioritised joint angle data of a
motion sequence that includes ten iterations of a squat exercise.

Figure 3.8: Marked extrema of smoothed prioritised joint angle data of a motion sequence
that includes ten iterations of a squat exercise after removing extrema markings
that are not close enough to their respective target angle.

Identifying Extrema

After the joint angles have been smoothed, minima and maxima of each joint angle sequence
are identified by comparing the angle value of each frame to a group of adjacent frames. If
the joint angle values of all adjacent frames are greater than the current examined value,
the frame is considered to be a local minimum. If on the other hand, all values are less, it
is considered to be a local maximum. Figure 3.7 shows the smoothed joint angle data of
another squat exercise sequence including identified minima (arrowhead pointing down)
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and maxima (arrowhead pointing up). It may be observed, that significant local extrema,
which might represent start and end frames of an iteration, have been identified. But in
addition to that, some unwanted extrema were found around the frames 20 to 40, frames 340
to 360 and frames 660 to 680. The identified maxima in these frame ranges are unwanted,
as they only represent maximum values that are very close to their adjacent minima and
not helpful in identifying single iterations.
In order to remove this kind of unwanted extrema, the joint angle values of identified local
minimum and maximum frames are compared to the exercises defined target angles for
start and end position. Before that, it is necessary to determine what kind of joint motion
must be performed for the current exercise. If the joint motion is a flexion or abduction, the
exercises’ end-state target angle is greater than the start state target angle. As a consequence,
the maxima of such body part joint angles shall represent frames where the angle value is
as close as possible to the exercises’ defined end-state angle value (see 3.2.2). If on the
other hand, the joint motion is an extension or adduction, the exercises end-state target
angle is less than the exercises start state target angle (see 3.2.2) and identified maxima
shall represent frames where the angle value is as close as possible to the exercises defined
start state angle value.
Given the information of what minima and maxima should represent, extrema are filtered
by determining the distance of the angle values for extrema frames to the desired target
angle value and to the unwanted target angle value. If the distance to the unwanted target is
less than to the desired target, the extremum is removed. Figure 3.8 shows the same data
as Figure 3.7 after applying the filter stated above. It can be observed, that the unwanted
maxima in frame ranges 20 to 40, 340 to 360 and 660 to 680 observed in Figure 3.7 have
been successfully removed.

3.3.3 Identifying Iterations

Based on the identified and filtered extrema of prioritised body parts, as explained in
chapter 3.3.2, the following steps aim to identify start, turning and end frames of single
iterations of the performed exercise set. Identified start and end frames should ideally be
located at the frame, where the exercises starting position has been reached or was intended
to be reached. Identified turning frames should ideally mark the location where the target
position of the exercise has been reached and the reversing motion is started to reach the
starting position again. One iteration is then defined as a start/end frame, followed by a
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turning frame, followed by a start/end frame.
The process of deriving start, turning and end frames from extrema of smoothed body part
angles is explained in the following sections.

Confirming Key Frame Candidates

Figure 3.9: Marked extrema of smoothed prioritised joint angle data of a motion sequence
that includes ten iterations of a squat exercise after removing extrema markings
that are not close enough to their respective target angle. Enhanced by marked
frames that represent confirmed keypoint candidates of single iterations.

Depending on the types of intended exercise motions, minima and maxima of each body
part angle sequence should represent key frame candidates. Meaning either start/end frames
or turning frames of an iteration, as explained in the identifying extrema section of chapter
3.3.2. Consequently, all of the identified extrema are either start/end frame candidates
or turning frame candidates. The goal is now, to find key frame candidates, which recur
in all or nearly all of the prioritised body part angle sequences within a specified frame
range. Moreover, if more than one key frame candidates are present within that range, that
belong to one body part angle sequence, all but the first candidate will be removed. In case
a group of start/end frame candidates or turning frame candidates along all prioritised body
parts is found, the arithmetic mean of their frame numbers is calculated. The result then
represents a confirmed key frame candidate.
Figure 3.9 shows the same data as Figure 3.8, enriched by markings for confirmed key
frames. It can be observed, that groups of single body part angle key frames have been
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summed up to one confirmed key frame candidate. It can also be seen, that the redundant
minima at frame 360 and 670 did not result in a second confirmed key frame candidate,
but only the first candidate in that range has been accounted for.

Determine Iteration Key Frames

Figure 3.10: Marked extrema of smoothed prioritised joint angle data of a motion sequence
that includes ten iterations of a squat exercise after removing extrema markings
that are not close enough to their respective target angle. Enhanced by marked
frames that represent confirmed keypoint candidates of single iterations.
Serves as an example for many multiple confirmed key frame candidates in a
sequence.

The last step to identify single iterations of an exercise sequence is to form groups of three
key frames. The start frame, turning frame and end frame number of an iteration. To
achieve that, it must be assured that only those confirmed key frame candidates are grouped,
where a start frame lies before a turning frame and that turning frame lies before an end
frame. It must also be respected, that iterations do not overlap each other.
In Figure 3.9 it can be observed, that two confirmed start/end frame candidates have been
identified at the start of the sequence. But as there is no confirmed turning frame between
the two, one of them must be removed in order to meet the order condition stated in the
paragraph above. The problem might become clearer when observing Figure 3.10, which is
another sequence of ten squat iterations, where the problem of multiple adjacent confirmed
start/end frame candidates is very prominent.
The result of which key frames are finally being grouped up to iterations can be observed in
Figure 3.11. The plot displays the same sequence as Figure 3.10 but is enriched by markings
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Figure 3.11: Marked extrema of smoothed prioritised joint angle data of a motion sequence
that includes ten iterations of a squat exercise after removing extrema markings
that are not close enough to their respective target angle. Enhanced by marked
frames that represent confirmed keypoint candidates that have been removed
and other marked frames that represent the final key frames of single iterations.

that represent the frames which are part of an identified iteration and the confirmed key
frame candidates that have been removed, in order to meet the order and overlapping rules
stated in the first paragraph of this chapter. In the displayed sequence, all iterations of the
performed squat exercise have successfully been identified.

3.4 Matching Motion Sequences

In this chapter, the approach to identify an exercise by comparing it to ground-truth exercise
sequences is presented. The result is an Euclidean distance for each ground-truth sequence
the query sequence has been compared to. The exercise that results in the lowest distance
should be the same as the performed exercise of the query sequence.

3.4.1 Determining DTW Distances of Motion Sequences

The identification of the exercise that is performed in a motion sequence is based on
sequences of joint angles, which serve as transformational invariant representations of body
poses. So each pose in a sequence is represented by several joint angles. The similarity
between two of such poses can be determined by calculating the Euclidean distance between
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Figure 3.12: Visualised difference of Euclidean distance and dynamic time warped Eu-
clidean distance determination between two sequences.

[46]

these pose representations.
Consequently, an Euclidean distance between all frames of a motion sequence represented
by joint angles could describe the similarity of those sequences. However, this is only true
if the compared sequences are of the same length. But the length of motion sequences of
performed exercises depends on the trainees’ speed of action. Thus, two of these motion
sequences will rarely be of the same length. As a consequence, two very similar motions
performed at different pace may result in compressed, stretched or time-shifted versions
of each other. The Euclidean distance between such sequences would not represent a
meaningful similarity measure to match the type of motion. Because the Euclidean distance
is measured frame by frame and without respect to the mentioned differences in time. The
upper part of Figure 3.12 shows a visualisation of an Euclidean distance measurement for
two arbitrary sequences. It can be observed, that each frame of one sequence is compared to
the respective frame of the other. For instance, the first peak of the blue graph is compared
to the flat values of the red graph. Resulting in rather high distances caused by a time shift,
which is not desired.
However, the Euclidean distance represents a meaningful similarity in order to compare
two motion sequences that are ideally aligned with each other. For this purpose, the DTW
algorithm is perfectly suited. As explained in chapter 2.3.1, the DTW algorithm aligns two
motion sequences to each other by matching those indices that result in the lowest possible
distance. Resulting in a lowest possible total Euclidean distance of the compared time
series, which is the optimal representation of their similarity to each other. The bottom part
of Figure 3.12 shows a visualisation of the distance measurement and alignment performed
by the DTW algorithm. The black lines show which values of both sequences are compared
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Figure 3.13: Two left elbow angle sequences of two biceps curl exercise motion sequences
and the calculated DTW path for them.

to each other as they result in the lowest distance to each other.
Transferred to the exercise matching task of this thesis, the DTW algorithm is perfectly

suited to compare one single iteration exercise motion sequence to other ground-truth
exercise sequences. The lowest resulting total DTW distance of all comparisons including
all body part angles is then considered a match. Figure 3.13 visualises the DTW alignment
for the left elbow angle of two tracked motion sequences of a biceps curl exercise. It can be
observed, that the sequences primarily differ in a time shift caused by different inactivity
times before the arm has been flexed. As the DTW algorithm aligned the most similar
values of each sequence, indicated by the black lines, that timeshift does not affect the
resulting distance greatly. For illustration purposes, Figure 3.13 only shows the right elbow
angles for both sequences. But it is important to note, that the actual matching involves all
body part angles.

3.5 Rating Execution of Exercises

In order to rate executed exercises, two different approaches will be presented. One
approach is based on a comparison between predefined target joint angles for exercises and
determined joint angles of a trainee while performing these exercises. The other approach
is based on the matching method used in chapter 3.4 and derives execution quality ratings
from the similarities between joint angle sequences of a query sequence and ground-truth
sequences.
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3.5.1 Comparing Joint Angles

This approach to determine the quality of executed exercises directly utilises the calculated
joint angles as explained in chapter 3.2. Aiming to deliver single frame feedback for all
joint angles, whether the respective target angles are currently undercut, exceeded or reached.

Intended exercise executions are defined by clinical human joint angles of a start and end
position for a particular exercise. This circumstance allows to use the clinical meaningful
angles that are calculated from the 3-D tracking positions of a trainee in order to com-
pare them to those predefined target angles. Unlike in the subsequencing and matching
approaches, the calculated joint angles are not only used as input data for the procedure but
are directly compared to the exercises target angles. To be able to do that, it is important
that the calculated joint angles are clinically meaningful and not just of mathematical
nature.
To be able to compare the joint angles of the performing trainee to the target angles of the
exercise, the desired target state for each frame of the examined sequence must be known.
At the beginning of the process, the target state is always the end state, as it is assumed
that the exercise motion sequence that is about to be examined starts in the desired starting
position. The identification of the turning point, the frame at which the target state changes
to the start state, is determined by the subsequencing process explained in chapter 3.3.3.
Consequently, the calculated joint angles of all following frames after that turning point
must be compared to the desired target joint angles of the predefined angles for the start
state.
The resulting feedback of the comparison consists of a current result state for each of the
joint angles. The three result states are undercut, in range and exceeded. The undercut
state means, that the predefined target angle for this particular joint has not been reached in
this particular frame. The in range state means, that the target angle is reached right now.
And the exceeded state means, that the target joint angle has already been exceeded.
It is intended, that the returned feedback states for each joint angle allow other software to
generate high-quality notifications for their potential users. Being able to address specific
body parts and timeframes to give users feedback about their performance right after every
execution of an exercise.
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3.5.2 Deriving Quality Ratings from Similarities

This second approach to rate a trainees exercise performance differs greatly from the
method described in chapter 3.5.1. Instead of comparing calculated angles of a trainee
to predefined exercise target angles, this method utilises the distance-based matching
process described in chapter 3.4. In this approach, the similarity between the joint angle
sequences of a query sequence and a ground-truth sequence of an exercise is used to derive
assumptions about the quality of a trainees’ exercise performance.

In chapter 3.4 the DTW Euclidean distance is used to identify types of exercises by
comparing them to labeled sequences of different exercises in form of joint angle sequences.
In that use-case, the labeled sequence that has the lowest resulting distance to the query
sequence is considered to be the performed exercise in the query sequence.
In this performance quality determination use-case, the DTW distance can be reinterpreted.
For that, a ground-truth or gold standard sequence is defined, which reflects the perfect exe-
cution of a particular exercise. The DTW distance of a query sequence to this ground-truth
sequence then describes the difference of those to each other. Respectively, the distance
describes the deviation from the ground-truth, the perfect execution. So the smaller the
distance between query sequence and ground-truth, the better the execution of the exercise.
In order to not only being able to give feedback about the overall exercise performance
quality but also mentioning specific body parts, the distance is calculated for each body
part angle sequence respectively. This allows to give more specific feedback with regard to
particular body parts that might differ more from the ground-truth than others.
The resulting quality rating of this approach probably is not suited to absolutely determine
whether the execution was still okay or wrong. As slight differences in motion might
sometimes make the difference of a good and an injurious performance of an exercise.
But based on the similarity determination, it is still possible to notify users about specific
body parts they should give attention to. In a use-case as described in [41], where
physicians record personalised ground-truth sequences with rehabilitation patients, this
kind of feedback still can be of high value. Especially if the users are able to watch a video
of the ground-truth sequence in order to compare their performance to that.
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3.5.3 Discussion of Exercise Rating Approaches

The presented approaches to rate exercise performances are very different from each other.
(1) The first approach directly compares predefined exercise target joint angles and joint
angles of a performing trainee to each other in order to derive concrete feedback about each
body part angle on a one frame basis. The outcome is a set of result states for each body
part angle, whether it is undercut, in target range or exceeded. (2) The other approach
derives the quality of execution from the distance between joint angle sequences of each
body part angle and respective sequences of a gold-standard.
On the one hand, the first approach (1) is suited to give more accurate feedback about
whether a motion is okay or wrong even if the result depends on minor differences in
motion. On the other hand, that method can only be applied to predefined exercises as
described in chapter 3.1.3. Therefore, slight changes in the desired motions may require
customisation of various target angles in the exercise definition files. Further, this angle
comparison based approach requires clinical meaningful angles to be able to compare
medical target angles defined by physicians, to the resulting angles of a trainees’ or patients’
motions.
The second approach (2), which is based on the similarity of two motion sequences, is
not as suited as (1) to give detailed feedback about whether a motion is injurious or not.
The result is more of a hint, that mentions body parts that should receive special attention
because their motion was different from the ground-truth sequence. Although the results
of this method are less accurate, it has some other advantages over (1). It does not require
predefined exercise files and target angles, but only a ground-truth sequence to evaluate
against. Therefore, the number of exercises and their individual complexity is not limited,
which makes the approach very generic and possibly transferable to other motions than
sport exercises. Additionally, this approach is not only comparing against target angles of a
start pose or end pose but compares the whole motion instead. Moreover, this approach
does not necessarily require clinically meaningful joint angles, but could also use other
angle representations or possibly even completely different input sequences.

In conclusion, the first approach (1) gives more accurate feedback but is limited to
predefined exercises and specific key points. It is arguably harder to personalise exercises or
create complex exercises that might consist of concatenated exercises. The second approach
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(2), however, produces less accurate feedback. Nevertheless, it does not necessarily require
clinically meaningful joint angles and predefined exercises. Furthermore, it allows to
evaluate complex motions and considers the whole motion instead of specific keypoints.

3.6 Summary

This chapter described the approaches and methods to handle the main objectives of this
thesis. The calculation of clinically meaningful joint angles, and their usage across the
following chapters have been presented. Further, approaches to retrieve single iteration
subsequences from exercise sequences and to match motion sequences based on the DTW
algorithm have been presented. Followed by two different approaches in order to rate
executions of sport exercises, including a conclusive discussion of both approaches.
The presented approaches will be evaluated in chapter 5 using a self-created dataset,
which is also a contribution of this thesis. The next chapter briefly presents selected
implementations of the joint angle calculations and the subsequencing process.
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The Python 3.7 prototype has been implemented in order to demonstrate the feasibility
of the developed methods, which tackle the main objectives of this thesis. In this chapter,
selected parts from the implemented human motion analysis prototype will be presented.
The first part deals with the implementation of the joint angle calculations explained in
chapter 3.2. The second part presents the subsequencing procedure introduced in 3.3. The
prototypes’ source code can be found on the attached data storage under source_code.zip.

4.1 Joint Angle Calculation

Whenever a sequence object (see 3.1.2) is initialised, joint angles for 3-D positional body
joint data is calculated. For non-ball joints, the joint flexion/extension angles can directly
be calculated. For ball joints, a JCS must be constructed before flexion/extension and
abduction/adduction angles can be determined.

4.1.1 JCS Construction

For every frame and ball joint of a sequence, the align_coordinates_to function (see
Listing 4.1) is called in order to construct a Joint Coordinate System (JCS), which is needed
to determine the respective joint angles. The function expects four arguments to perform
this task. Three specific body part indices and the 3-D joint positions for one specific
frame. The body part indices origin_bp_idx, x_direction_bp_idx and y_direction_bp_idx
determine which body part positions are used to construct the axes of the JCS.
Then, the JCS axes vx, vy and vz are calculated as described in chapter 3.2.1 in the Finding
JCS Axes section. The corresponding code part for the procedure can be observed in
Listing 4.1 from line 8 to line 18.
After the direction of the axes have been calculated, the translation matrix T and rotation
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matrices Rx and Ry are determined as explained in chapter Section 3.2.1 in the Transforming
Joint Positions from GCS to JCS section. The corresponding code part in Listing 4.1 can
be seen from line 21 to 30. At line 21 the translation matrix is obtained to move the JCS
origin into the origin joints position. At line 23 to 25, the x-axis rotation is determined by
constructing a rotation axis x_rot that is perpendicular to the calculated JCS axis vx and
the target direction vector [1,0,0]. Then the angle between vx and [1,0,0] is calculated in
order to construct the rotation matrix Rx at line 25, which represents the rotation from vx to
[1,0,0] about the x_rot axis. After that, the third and last transformation is determined from
line 27 to 30. At line 29 the angle is calculated as for Rx but this time, after the rotation Rx
has been applied to vy at line 27.
Further, the complete transformation matrix M is determined at line 33, representing the
dot product of T, Rx and Ry. Lastly, the transformation M is applied to all positions of the
positions argument at line 35. As a result, the transformed positions are returned.
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1 def align_coordinates_to(origin_bp_idx: int, x_direction_bp_idx: int, y_direction_bp_idx: int,

positions: np.ndarray):

2 # Positions of given orientation joints in GCS

3 origin = positions[origin_bp_idx]

4 x_direction_bp_pos = positions[x_direction_bp_idx]

5 y_direction_bp_pos = positions[y_direction_bp_idx]

6

7 # New X-Axis from origin to x_direction

8 vx = x_direction_bp_pos - origin

9 if vx[0] < 0:

10 vx = -vx

11 # New Z-Axis is perpendicular to the origin-y_direction vector and vx

12 vz = get_perpendicular_vector((y_direction_bp_pos - origin), vx)

13 if vz[2] < 0:

14 vz = -vz

15 # New Y-Axis is perpendicular to new X-Axis and Z-Axis

16 vy = get_perpendicular_vector(vx, vz)

17 if vy[1] < 0:

18 vy = -vy

19

20 # Construct translation Matrix to move given origin to zero-position

21 T = translation_matrix_4x4(np.array([0, 0, 0])-origin)

22 # Construct rotation matrix for X-Alignment to rotate about x_rot_axis for the angle theta

23 x_rot_axis = get_perpendicular_vector(vx, np.array([1, 0, 0]))

24 theta_x = get_angle(vx, np.array([1, 0, 0]))

25 Rx = rotation_matrix_4x4(x_rot_axis, theta_x)

26 # Use new X-Axis axis for y rotation and Rotate Y-direction vector to get rotation angle

for Y-Alignment

27 y_rot_axis = vx

28 vy_rx = np.matmul(Rx, np.append(vy, 1))[:3]

29 theta_y = get_angle(vy_rx, np.array([0, 1, 0]))

30 Ry = rotation_matrix_4x4(norm(y_rot_axis), theta_y)

31 # Transform all positions

32 transformed_positions = []

33 M = np.matmul(T, Rx, Ry)

34 for pos in positions:

35 pos = np.matmul(M, np.append(pos, 1))[:3]

36 transformed_positions.append(pos)

37

38 return transformed_positions

Listing 4.1: JCS axes determination and transformation from
hma.movement_analysis.transformations.py
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4.1.2 Angle Calculation

The calc_angles_shoulder_left function calculates the flexion/extension and abduction/ad-
duction angles of the left shoulder joint for every frame of a sequence. The function can be
observed in Listing 4.2. After the original joint positions have been transformed by the
align_coordinates_to function at line 7, the x, y and z coordinates of the spatially influenced
joint, in this case, the left elbow, are obtained. Further, the spherical coordinates r (line 13),
theta (line 17) and phi (line 28) are calculated to determine clinical meaningful angles as
explained in the Ball Joints section of chapter 3.2.2. The elevation angle theta represents
the abduction/adduction angle and must be subtracted from 90.0 degrees (line 18) to equal
zero in the anatomical position. Similarly, the azimuth angle phi, which represents the
flexion as a rotation about the x-axis, must be increased by 90.0 (line 29). Moreover, 360.0
degrees must be subtracted from phi if phi is greater than 180.0 degrees (line 31-32) to
move its range from 0 to 360.0 degrees to -180 to 180 degrees as extension angles are
represented by negative phi values. As phi is not defined if the elbow lies directly on the
x-axis, phi is set to zero whenever the angle of the x-axis and the vector from the JCS
origin to the left elbow vector is zero (line 22-24). The result is then stored in a predefined
numpy array angles (line 4) at the positions for the current frame and the respective angle
type (line 35-36). When all angles of the respective body joint have been calculated for all
frames, the angles numpy array is finally returned (line 38).
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1 def calc_angles_shoulder_left(positions: list, shoulder_left_idx: int, shoulder_right_idx: int

, torso_idx: int, elbow_left_idx: int) -> np.ndarray:

2 n_frames = len(positions)

3 n_angle_types = len(AngleTypes)

4 angles = np.zeros((n_frames, n_angle_types))

5 for frame in range(0, n_frames):

6 # Move coordinate system to left Shoulder

7 left_shoulder_aligned_positions = transformations.align_coordinates_to(

shoulder_left_idx, shoulder_right_idx, torso_idx, positions[frame])

8

9 ex = left_shoulder_aligned_positions[elbow_left_idx][0]

10 ey = left_shoulder_aligned_positions[elbow_left_idx][1]

11 ez = left_shoulder_aligned_positions[elbow_left_idx][2]

12 # Convert to spherical coordinates

13 er = math.sqrt(ex**2 + ey**2 + ez**2)

14

15 # Theta is the angle of the Shoulder-Elbow Vector to the YZ-Plane

16 # Represents an abduction/adduction

17 theta = math.degrees(math.acos(ex/er))

18 theta = 90.0 - theta

19 abduction_adduction = theta

20

21 # Phi is arbitrary when point is on rotation axis, so we set it to zero in that case

22 elbow_xaxis_angle = transformations.get_angle(np.array([1, 0, 0]),

left_shoulder_aligned_positions[elbow_left_idx])

23 if elbow_xaxis_angle == 0.0 or elbow_xaxis_angle == math.pi:

24 phi = 0

25 else:

26 # Phi is the angle of the Elbow around the X-Axis (Down = 0)

27 # Represents flexion/extension angle

28 phi = math.degrees(math.atan2(ey, -ez))

29 phi += 90.0

30 # An Extension should be represented in a negative angle

31 if phi > 180.0:

32 phi -= 360.0

33 flexion_extension = phi

34

35 angles[frame][AngleTypes.FLEX_EX.value] = flexion_extension

36 angles[frame][AngleTypes.AB_AD.value] = abduction_adduction

37

38 return angles

Listing 4.2: Left shoulder angle calculation from
hma.movement_analysis.angle_calculations.py
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4.2 Subsequencing Motion Sequences

The subsequencing algorithm is explained in detail in chapter 3.3. The subsequencing
procedure is part of the ExerciseEvaluator class. The class receives an Exercise Object and
a Sequence Object as initial parameters as introduced in chapter 3.1. On initialisation of the
ExerciseEvaluator class the target angles and prioritised angles are parsed from the given
Exercise Object instance and also stored as an attribute. As the last step, the calculated
joint angles of the sequence are processed further with respect to the given Exercise Object
as described in 3.2.3.
The ExerciseEvaluator class also offers setter functions to change the Exercise and Sequence
on runtime, which again triggers the parsing of target angles and prioritised angles as well
as the postprocessing of the angles.
The following chapters present selected code from the subsequencing implementation.

Identifying Extrema

As a first step of the algorithm, the Sequence Objects joint angle data of the Exercise Objects
prioritised angles is smoothed using a Savitzky Golay Filter as explained in the Smoothing
Joint Angle Data section of chapter 3.3.2. In the displayed example of Listing 4.3 the
Savitzky Golay Filter function from the scipy.signal package is applied at line 9 using a
window size of 51 and the order 3. These window size and order parameters produced
good results, but are further examined when evaluating the procedure.
After the joint angle data has been smoothed, the argrelextrema function of the scipy.signal
package is used to identify a list of minima and maxima in the smoothed data (Listing 4.3
line 15-16). The order parameter of the argrelextrema function determines the number
of values on both sides of a currently examined value that must fulfil the given condition.
In this case, the conditions are np.greater and np.less and the order is set to 10. So a
maximum is identified whenever the examined data point is greater than the prior ten
values and next ten values. Similarly, a minimum is identified if the examined value is less
than its neighbours. Same as the Savitzky Golay Filter parameters, the best value for the
argrelextrema functions order parameter must be further examined during the evaluation
of the subsequencing procedure.
Additionally, a minimum or maximum, depending on whether the exercises’ target end
value is greater than the target start value, is added to the first and last frame of the sequence.
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But only if the angle values are closer to the respective exercises target angles than the
defined tolerance. (Listing 4.3 line 20-29). Otherwise, if these two extrema are not added,
the first and last frames of a sequence will only rarely be identified as extrema, because the
argrelextrema functions’ order parameter requires a constant fulfilment of its comparator,
which is rarely the case before the first and after the last maximum of a sequence. Therefore,
it is assumed that the first frame of the sequence is a starting frame and the last frame of
the sequence is an end frame.
Figure 3.7 represents the current stage of the algorithm. It shows smoothed prioritised
angle values, identified extrema from the scipy.signal.argrelextrema function and added
extrema for the first and last frame.

1 ...

2 for prio_idx, (body_part_idx, angle_type) in enumerate(self.prio_angles):

3

4 # Get calculated angles of a specific type for a specific body part for all frames

5 angles = seq.joint_angles[:, body_part_idx, angle_type.value]

6

7 # Apply a Savitzky-Golay Filter to get a list of smoothed angles.

8 savgol_window = 51

9 angles_savgol = savgol_filter(angles, savgol_window, 3, mode="nearest")

10 angles_savgol_all_bps[prio_idx] = angles_savgol

11 angles_all_bps[prio_idx] = angles

12 angles_legend[prio_idx] = body_part_idx

13

14 # Find Minima and Maxima of angles after applying a Savitzky-Golay Filter

15 maxima = argrelextrema(angles_savgol, np.greater, order=10)[0]

16 minima = argrelextrema(angles_savgol, np.less, order=10)[0]

17

18 # Get Exercise targets for the current angle type

19 ex_targets = self.target_angles[body_part_idx][angle_type.value]

20 # Check if Exercise targets of target state END are greater than targets of START

21 # We need this information to identify whether local MAXIMA or MINIMA represent

start/end of a subsequence

22 target_end_greater_start = min(ex_targets[AngleTargetStates.END.value]) > min(

ex_targets[AngleTargetStates.START.value])

23 # Add minimum to first and last frame if start_frame_min_dist/end_frame_min_dist

24 # param value is not less than the actual distance to the target angle

25 target_distance_tolerance = abs(int(mean(ex_targets[AngleTargetStates.END.value])

- mean(ex_targets[AngleTargetStates.START.value])))

26 angles_savgol = np.array(angles_savgol)
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27 target_start_range = self.target_angles[body_part_idx][angle_type.value][

AngleTargetStates.START.value]

28 if (min(target_start_range) - target_distance_tolerance < angles_savgol[0] < max(

target_start_range) + target_distance_tolerance):

29 minima = np.insert(minima, 0, 0)

30 if (min(target_start_range) - target_distance_tolerance < angles_savgol[-1] < max(

target_start_range) + target_distance_tolerance):

31 minima = np.append(minima, len(angles_savgol)-1)

Listing 4.3: Smoothing and identification of
initial minima and maxima of the find_iteration_keypoints function from
hma.movement_analysis.exercise_evaluator.py

Filtering Extrema

Some of the extrema identified in the stage described in the last section must be filtered
because they do not represent key points of an iteration. Listing 4.4 shows the first filter,
which removes extrema whose respective angle values are closer to the opposite target
value than the desired target value. The defined lambda function filter in Listing 4.4 line
4 returns True for all values whose distance to the minimum value of the exercises’ start
target range is greater than that to the minimum value of the end target range. Depending
on whether the target end values are greater than the target start values, the filter is applied
to the minima or maxima of the current body part. Consequently, the inversed filter is
applied to the other extrema. In Listing 4.4 line 5-10 the filtering can be observed. The
defined lambda filter is used as a conditional index of the extrema numpy arrays, removing
all values that result in a returned False value of the filter or inversed filter.

1 ...

2 # Check if distance to Exercise START target angle is greater than Exercise END target

angle

3 # in order to remove falsy maxima/minima

4 def _dist_filter(x): return abs(angles_savgol[x] - min(ex_targets[AngleTargetStates.

START.value])) > abs(angles_savgol[x] - min(ex_targets[AngleTargetStates.END.value]))

5 if target_end_greater_start:

6 maxima = maxima[_dist_filter(maxima)]

7 minima = minima[np.invert(_dist_filter(minima))]
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8 else:

9 maxima = maxima[np.invert(_dist_filter(maxima))]

10 minima = minima[_dist_filter(minima)]

11 ...

Listing 4.4: Target distance filter for extrema of the find_iteration_keypoints function from
hma.movement_analysis.exercise_evaluator.py

After the distance filtering, the remaining extrema are applied to a binary matrix for
starting and turning frames. The rows of these binary matrices represent a body part and
the columns represent a frame of the examined sequence. Corresponding extrema are
represented by a 1, all other frames are represented by a 0 in these matrices.
After extrema for all prioritised body parts have been identified and filtered by the described
distance filter, the remaining extrema for these body parts must be confirmed by checking
whether all or most of the body part sequences have extrema in a specified window range.
Therefore, the _confirm_extrema function shown in Listing 4.5 is used. The function
receives three parameters. An extrema matrix as described in the prior paragraph. A
window size, that defines how many frames are grouped up when checking the number of
found extrema. And a confirm extrema threshold, that determines how many body parts
must have an extremum in the window range.
The function moves the defined window over the whole matrix, checking whether the sum
of values in a window row is at least 1.0 as this means that there is at least one extremum of a
body part (Listing 4.5 line 9-11). If at least as many rows contain an extremum in the current
window as the defined confirm_extrema_thres value, an extremum is confirmed (Listing 4.5
line 13). Further, the mean frame of the first and last extremum in the window is added to the
confirmed_extrema list and the extrema matrix values in that window are set to 0.0 after that.

1 def _confirm_extrema(self, extrema_matrix: np.ndarray, w_size: int, confirm_extrema_thresh:

int) -> np.ndarray:

2 confirmed_extrema = []

3 for column_idx in range(0, extrema_matrix.shape[1]):

4 w_start = column_idx

5 w_end = w_start + w_size

6 window = extrema_matrix[:, w_start:w_end]

7

8 # Check how many window rows include at least one extremum

9 w_row_extrema = 0

10 for w_row in window:
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11 w_row_extrema += 1 if (np.sum(w_row) >= 1.0) else 0

12 # If enough window rows include an extremum

13 if w_row_extrema >= confirm_extrema_thresh:

14 # Find first extremum in window

15 extrema_in_window = np.argwhere(window > 0)

16 first_window_extremum = np.min(extrema_in_window[:, 1])

17 last_window_extremum = np.max(extrema_in_window[:, 1])

18 # Use average index between first and last extremum in window as confirmed

extremum index

19 confirmed_extremum = int((first_window_extremum + last_window_extremum)/2) +

w_start

20 confirmed_extrema.append(confirmed_extremum)

21 # Remove all 1.0 values from the current window slice of the extrema_matrix

22 extrema_matrix[:, w_start:w_end] = np.zeros(window.shape)

23 return np.array(confirmed_extrema)

Listing 4.5: The _confirm_extrema function from
hma.movement_analysis.exercise_evaluator.py

Identifying Iterations

The last step of the subsequencing algorithm is described in the Determine Iteration Key
Frames section of chapter 3.3.3. In this stage, the identified start/end and turning points are
grouped to three key frame indices that represent a subsequence containing one iteration
of the examined exercise sequence. Therefore, the _confirm_iterations function that is
displayed in Listing 4.6 ensures that the start, turning and end frame indices meet the
condition start_index < turning_index < end_index.
The _confirm_iterations function receives two numpy arrays as arguments. The con-
firmed_start_frames and confirmed_turning_frames, which contain the sequences frame
indices of the confirmed key frames identified in the prior section of this chapter. The
first condition in Listing 4.6 line 7 checks whether the end frame index from the last
iterations’ last_end_frame is greater than the current start index and continues with the
start frame index if the condition is met. This prevents overlapping iterations. As a
next step only those confirmed turning frame indices are kept, which are greater than the
current starting frame (Listing 4.6 line 11). Consequently, the confirmed_turning_frames
numpy array only contains turning points which lie after the current start frame. If the
confirmed_turning_frames array is empty after this, there are no more iterations to identify,
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and the loop is exited (Listing 4.6 line 14-15) to return the current list of iterations. However,
if at least one confirmed turning point is left the same procedure is repeated in Listing 4.6
line 18-21. Thus, the first turning frame index after the start frame index is compared to all
confirmed start/end frames and all start/end frames that lie before that turning frame are
removed. If the resulting confirmed_end_frames array is empty, there are no suitable end
frames left and the loop is exited. However, if there is at least one end frame left, the first
end frame in confirmed_end_frames is kept for the condition at line 7 and an iteration is
appended to the list of iterations, which is returned after the loop is finished (Listing 4.6
line 24-27).

1 def _confirm_iterations(self, confirmed_start_frames: np.ndarray,

confirmed_turning_frames: np.ndarray) -> list:

2 iterations = []

3 last_end_frame = None

4 # We Don't need to iterate over the last element because this can't be the start of a

iteration anymore.

5 for sf_idx in range(0, len(confirmed_start_frames)-1):

6 # Ensure that next start frame is greater equal than last end frame

7 if last_end_frame is not None and last_end_frame > confirmed_start_frames[sf_idx]:

8 continue

9 # Only keep turning frames that occur later than the current start frame

10 start_frame = confirmed_start_frames[sf_idx]

11 confirmed_turning_frames = confirmed_turning_frames[start_frame <

confirmed_turning_frames]

12 # If there is no element in confirmed_turning_frames that is greater the current

start_frame,

13 # we can exit the loop since following start_frames will be even higher

14 if len(confirmed_turning_frames) == 0:

15 break

16 # If there are still elements left in confirmed_turning_frames, take the smallest

one as our turning point

17 else:

18 turning_frame = confirmed_turning_frames[0]

19 confirmed_end_frames = confirmed_start_frames[turning_frame <

confirmed_start_frames]

20 if len(confirmed_end_frames) == 0:

21 break

22 # If there are still elements left in confirmed_end_frames, take the smallest

one as our end point

23 else:

24 end_frame = confirmed_end_frames[0]
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25 last_end_frame = end_frame

26 iterations.append(np.array([start_frame, turning_frame, end_frame]))

27 return np.array(iterations)

Listing 4.6: The _confirm_iterations function from
hma.movement_analysis.exercise_evaluator.py

4.3 Conclusion

The presented implementations show how the concepts described in chapter 3.2 and 3.3
can be realised in python 3.7. However, these implementations only represent one working
solution to demonstrate the explained concepts and may be further optimised in terms of
structure, performance, robustness, scalability and flexibility. The next chapter deals with
the evaluation and presents the results of this work.
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In this chapter, the developed concepts and results regarding the main objectives of this
thesis are presented and evaluated. The first section states the developed results, which are
then observed and evaluated in the following section to check the quality of these solutions
and identify problems that may occur during the process. Finally, the evaluations results
are concluded.

5.1 Results

The results of this work are the methods and the prototyped implementations of these
methods as well as a sport exercise motion tracking dataset to solve the main objectives of
this thesis. These results allow to analyse sport exercise motion sequences in real world
scenarios. A video that briefly states the results can be found on the attached data storage
under results_summary_video.mp4.

This includes counting and identifying single iteration subsequences from motion
sequences that consist of multiple repititons of a sport exercise. The subsequencing result
is displayed in Figure 5.1, showing a trainee performing ten repetitions of a squat exercise
to the left and identified squat iterations to the top right. Additionally, the smoothed knees
and hips joint angle graphs are displayed in the bottom of the figure, including markings
for joint angle extrema and identified key frames.

Consequently, the identified subsequences are then used to rate the trainees exercise
performance respectively. To do so, the calculated joint angles of the motion sequence
are compared to predefined target angles of the performed exercise with respect to the
current target state. The initial target state is always the END state and represents the pose
after which the motion should be inverted to reach the start pose again. The target pose
switches from END to START after the turning frame of the examined sequence has been
reached. So the turning frame, determined by the subsequencing procedure, which also
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Figure 5.1: Subsequencing result presentation showing a trainee performing squats (left),
the 3-D skeleton representation of the trainees motion (top-center), joint angle
graphs with marked extrema and iteration key frames (bottom) and identified
squat iterations including their key frame indices (top-right)

Figure 5.2: Trainees’ squat exercise performance rating result determined for the turning
frame of the motion. Shows the performing trainee and his tracked skeleton
(left) as well as predefined exercise parameters and rating results (right).
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Figure 5.3: Trainees’ squat exercise performance rating by comparing joint angle sequences
to the joint angle sequences of an exercises’ ground-truth motion sequence.
Shows the performing trainee of the query sequence (top-left), the performing
trainee of the ground-truth sequence, the DTW distances for each body
part angle comparison (right) and graphs for the knees joint angles of both
sequences.

works for single iteration sequences, is used as additional input for the rating procedure.
Figure 5.2 shows the performance rating results for a squat execution. On the left hand
side, the trainees pose at the turning frame of his motion is shown. The right hand side
shows that the current target state is the END state and that the defined tolerance for the
squat exercise is ten degrees. Further the target angle ranges, the current joint angles and
the result states for prioritised joint angles of the squat exercise are displayed. The final
execution performance result is located in the top right corner. In this case, the execution is
incorrect due to exceeded knee angles. A correct execution requires to never exceed any of
the prioritised angles during the motion.
In addition to the rating procedure stated in the last paragraph, another exercise performance

rating method has been developed that directly utilises the DTW algorithm in order to
determine an aligned distance between joint angle sequences of selected body parts. This
method aims to identify body part motions in a query sequence which differ from those of
the ground-truth sequence. Figure 5.3 visualises such comparison results. In this case, the
comparison of the knees flexion angle sequences resulted in rather high DTW distances,
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Figure 5.4: Result visualisation for identification of the exercise that is performed in a
query sequence. Showing the query sequence performing trainee (left), the
ground-truth sequences for five types of exercises as well as resulting DTW
distances of the comparisons between the query sequence and ground-truth
sequences respectively.

which indicates that the knees are bended differently. In the bottom of the figure, the knees
joint angle graphs of both sequences are shown, which show that the knees maximum joint
angles of both sequences differ by about 30 degrees. In general, the DTW distance results
should lead to notifications that enable users to re-evaluate their body part motions or point
out specific body parts which should be further examined in order to generate more specific
performance feedback.

The last result feature identifies the type of exercise that is performed in a motion
sequence by determining the DTW distances between a query sequence and multiple
ground-truth sequences that represent one type of exercise respectively. In this method, a
multidimensional DTW comparison is performed using all calculated joint angles of the
sequences. Consequently, the resulting distance represents the difference of the compared
sequences based on all available joint angles. The ground-truth sequence that results in
the lowest DTW distance represents the type of exercise performed in the query sequence.
Figure 5.4 shows the DTW distances after comparing the query sequence, that is performed
by the trainee on the left hand side, to the exercise representing ground-truth sequences on
the right hand side. In this example, the squat exercise has been identified correctly as its
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ground-truth sequence resulted in the lowest DTW distance.
Additionally to the former presented results, a dataset including 1546 sequence files has
been recorded. The dataset consists of eleven different exercises performed by eight trainees
and is further separated in single and multi iteration sequences. The dataset has been used
to test and evaluate the developed and implemented methods. Moreover a result video
can be found on the attached data storage under results_summary_video.mp4. The video
briefly presents the developed results and includes video clips of performed exercises from
the recorded dataset.

5.2 Observations

5.2.1 Subsequencing Motion Sequences

In order to evaluate the subsequencing procedure described in 3.3 six exercises of the
dataset presented in 3.1.1 have been selected. The selected exercises are squat, overhead
press, biceps curl left, biceps curl right, knee lift left and knee lift right. The dataset
contains sequences that consist of ten repetitions of a particular exercise. The amount of
available sequences per exercise is listed in the No. of Ten i Seqs column of Table 3.1.
The goal is to find the parameter setup of the procedure which delivers the best results.
The result of each particular exercise is determined by the expected iterations to identified
iterations ratio. A perfect result for an exercise is considered a ratio of 1.000. The overall
result across all examined exercises is then determined by the mean Euclidean distance
from the perfect expected iterations to identified iterations ratio across all exercises. So
the smaller the distance, the better the result. Consequently, a perfect overall result would
be a mean distance of 0.0. The result values are rounded to three decimal places. The
number of expected iterations equals the number of sequences including ten repetitions of
an exercise multiplied by ten.
The procedure has four parameters that may influence the results, which are the Savitzky
Golay Filter window, the Savitzky Golay Filter order, the argrelextrema function order and
the extrema grouping window size. The parameters have initially been set to the following
values as stated in chapter 4.2: Savitzky Golay Filter window = 51, Savitzky Golay Filter
order = 3, argrelextrema function order = 10, extrema grouping window size = 30. The
initial value setup has been chosen as it produced good results for a small number of test
sequences while implementing the prototype.
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The goal is now to find the parameter setup which results in the smallest average absolute
expected iterations to identified iterations ratio distance. The start parameter values will be
set to the initial setup, which has been explained in the last paragraph.

Savitzky Golay Filter Window

Figure 5.5: Subsequencing results bar chart grouped by exercises using Savitzky Golay
window sizes 21, 51 and 101. Other parameters are set to: Savitzky Golay
order=3, argrelextrema order=10, extrema group window size=30

Exercise savgol_win = 21 savgol_win = 51 savgol_win = 101
squat 0.988 0.988 0.988
overhead press 1.086 0.943 0.621
biceps curl left 1.008 1.000 1.000
biceps curl right 1.000 1.000 1.000
knee lift left 1.000 1.000 1.000
knee lift right 1.000 1.000 1.000
Avg Abs Distance 0.106 0.069 0.391

Table 5.1: Subsequencing result ratios per exercise and average absolute distance using
Savitzky Golay window sizes 21, 51 and 101. Other parameters are set
to: Savitzky Golay order=3, argrelextrema order=10, extrema group window
size=30

In this section, the results using different Savitzky Golay Filter window values are presented.
In addition to the initial value of 51, a smaller size of 21 and a greater size of 101 have
been used. The result can be observed in Figure 5.5. It can be seen that the results for
different window sizes are similar for all exercises except the overhead press. The number
of identified iterations for the overhead press exercise increases if the Savitzky Golay
window is smaller. For the window size of 21, the resulting ration is 1.086. Thus, more
iterations have been identified than expected.
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All result ratios are listed in Table 5.1. A Savitzky Golay window size of 51 has resulted in
the best average absolute distance across all examined exercises. But it can be observed
that only the overhead press results using a window size of 101 differ from the results
using a window size of 51. Also, the window size of 21 resulted in ratios very close to
1.000 but it is conspicuous that more iterations have been identified than have been actually
performed. In this scenario the initial configuration performed best, resulting in an average
absolute distance of 0.069.

Extrema Grouping Window

Figure 5.6: Subsequencing results bar chart grouped by exercises using extrema grouping
windows 10, 30 and 50. Other parameters are set to: Savitzky Golay order=3,
argrelextrema order=10, Savitzky Golay window size=51

Exercise grouping_win = 10 grouping_win = 30 grouping_win = 50
squat 0.950 0.988 0.988
overhead press 0.557 0.943 1.064
biceps curl left 1.000 1.000 1.000
biceps curl right 1.000 1.000 1.000
knee lift left 0.692 1.000 1.000
knee lift right 0.775 1.000 1.000
Avg Abs Distance 1.026 0.069 0.076

Table 5.2: Subsequencing result ratios per exercise and average absolute distance using
extrema grouping windows 10, 30 and 50. Other parameters are set to: Savitzky
Golay order=3, argrelextrema order=10, Savitzky Golay window size=30

In this section, the results using different extrema grouping window size values are presented.
Apart from the initial value 30, the window sizes 10 and 50 are tested. The results are
visualised in Figure 5.6. The resulting expected iterations to identified iterations ratios for
window sizes of 30 and 50 are the same for all exercises but the overhead press. A extrema
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grouping window of size 10 results in significantly lower ratios. Consequently, the average
absolute ratio distance of 1.026 is very high compared to the distances 0.069 and 0.076 of
the other window sizes, as can be seen in Table 5.2.
Similar to the test for different Savitzky Golay window sizes, the overhead press results
are the worst with an average ratio of 0.855 across all extrema grouping window sizes. In
addition to that, the initial configuration delivered the best result with an average absolute
distance of 0.069, shortly before the distance of 0.076 for a window size of 50.

Investigating Overhead Press results

The evaluation results for the overhead press exercise differ significantly from the results
of the other exercises, which can be observed in Figure 5.5, Figure 5.6, Table 5.1 and
Table 5.2. On the one hand the resulting expected iterations to identified iterations ratios
are the worst compared to all exercises. On the other hand, the results vary much more
than for the other exercises across different parameter values.
In order to investigate the reason for these results, the subsequencing procedure of an
overhead press sequence has been visualised for the best performing setup (ratio=0.943) in
Figure 5.7. The subsequencing procedure identified 11 iterations for that sequence. It can
be observed, that the orange graph representing the right shoulders abduction/adduction
angles drops drastically from whenever the angle is close to 180 degrees. The reason for
that phenomenon is that the abduction/adduction angle calculation is able to determine an
angle range from -180 to 180. So whenever the trainee’s shoulder abduction should be
greater than 180 degrees, it jumps to a value that is slightly higher than -180 degrees. This
leads to very significant minima in the right shoulder angle graph displayed in Figure 5.7.
Subsequently, those minima may lead to start/end key frames if undesired extrema of the
other body parts are within the extrema grouping window range. If such false start/end key
frames in between two turning key frames, this will result in a false iteration. Even though
this is a major issue related to the angle calculations, the subsequencing procedure is still
able to identify most of the iterations correctly.
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Figure 5.7: Marked extrema of smoothed prioritised joint angle data of a motion sequence
that includes ten iterations of a squat exercise after removing extrema markings
that are not close enough to their respective target angle. Enhanced by
marked frames that represent confirmed keypoint candidates that have been
removed and other marked frames that represent the final key frames of single
iterations. Subsequencing parameters are set to: Savitzky Golay window
size=51, Savitzky Golay order=3, argrelextrema order=10, extrema grouping
window=30

5.2.2 Matching Motion Sequences

In order to evaluate the DTW distance based motion sequence matching procedure described
in 3.4 five exercises of the dataset presented in 3.1.1 have been selected. The selected
exercises are squat, biceps curl left, biceps curl right, knee lift left and knee lift right. The
overhead press exercise sequences are not used due to the discovered angle calculation
issues stated in chapter 5.2.1. The test dataset described in chapter 3.1.1 contains single
iteration exercises as listed in Table 3.1.
The goal in this chapter is to evaluate whether the DTW based matching method comparing
clinically meaningful joint angles of a query sequence to those of ground-truth sequences is
able to identify the performed exercise correctly. The result is expressed as the percentage
of correctly identified exercises. A correct identification is accounted if the DTW distance
to the ground-truth sequence of the correct exercise is less than the distances to all other
ground-truth sequences. The ground-truth sequence for each exercise is selected by hand
on a random basis but making sure the sequence has no major tracking issues and the
execution is assessed to be correct.
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Figure 5.8: Overall matching result for all single iteration sequences of squat, biceps curl
left, biceps curl right, knee lift left and knee lift right exercises.

Figure 5.9: Matching results grouped by exercises for all single iteration sequences of squat,
biceps curl left, biceps curl right, knee lift left and knee lift right exercises.

Exercise Correct Matches Incorrect Matches
squat 152 (98.7 %) 2 (1.3 %)
biceps curl left 117 (100.0 %) 0 (0.0 %)
biceps curl right 119 (100.0 %) 0 (0.0 %)
knee lift left 96 (80.7 %) 23 (19.3 %)
knee lift right 77 (62.6 %) 46 (37.4 %)
Overall 563 (88.8 %) 71 (11.2 %)

Table 5.3: Correct and incorrect matches listed by exercises for all single iteration sequences
of squat, biceps curl left, biceps curl right, knee lift left and knee lift right
exercises.
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Figure 5.10: Closest distance result distribution after comparing 123 right knee lift query
sequences to one ground-truth sequence per exercise.

The overall result for the comparison of 634 sequences resulted in 563 (88.8%) cor-
rect and 71 (11.2%) incorrect matches as visualised in Figure 5.8. Figure 5.9 shows the
distribution of the results across the exercises. It is striking that the amount of incorrect
matches of the right and left knee lift exercises is considerably higher than those of the
other exercises. Table 5.3 lists all matching results by their absolute value and percentage
separated by exercise.
Observing the result distribution for the right knee lift exercise displayed in Figure 5.10
shows that all incorrect matches have been assigned to the left and right biceps curl
exercises. Consequently, it is assumed that the right knee lift sequences which have been
incorrectly matched to the left biceps curl ground-truth include left arm movement that is
more similar to the left biceps curl ground-truth than to the right knee lift ground-truth.
The left elbow angles of two ground-truths sequences and an incorrectly matched query
sequence have been compared in Figure 5.11. It can be seen that the query sequences left
elbow flexion angle has been moved much less than in both ground-truth sequences. As
query sequence graph is very different to both ground-truth sequences there is no obvious
indicator that confirms the assumption. In Figure 5.12 the same sequences have been
compared for the left shoulder flexion angles. In this case, it can be observed that the graph
of the left shoulder angles for the left biceps curl ground-truth sequence is significantly
more similar to the query sequence than the graph of the right knee lift sequence. Based
on these observations, it is concluded that the major difference in the left shoulder angles
of the right knee lift query and ground-truth sequences lead to a resulting DTW distance
that is greater than that of the left biceps curl ground-truth.

77



5 Evaluation

Figure 5.11: Comparison of left elbow flexion angles for the ground-truth sequences of
the right knee lift and left biceps curl exercises and a query sequence of a
right knee lift.

Figure 5.12: Comparison of left shoulder flexion angles for the ground-truth sequences of
the right knee lift and left biceps curl exercises and a query sequence of a
right knee lift.

5.2.3 Rating Execution of Exercises

The evaluation of the two exercise execution rating approaches as described in chapter 3.5
is done without the participation of a physician. Consequently, the correctness of executed
exercises can not be reliably determined. Thus, the evaluation of both approaches does not
include final determinations whether an exercise execution is correct or incorrect. However,
both approaches are evaluated focussing on their specific outcome.
The Comparing Joint Angles method is supposed to return specific feedback whether
predefined target angles for each body part have been met. Therefore, the validity of the
returned feedback is checked whether it corresponds to what is expected when comparing
the actual angles of a sequence with the predefined target angles.
The second approach provides information about the similarities of a query sequence
and a ground-truth sequence with respect to specific body parts. In order to determine
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whether this feedback in form of a DTW distance is a meaningful indicator to identify
wrong executions the correlation between the difference of the maximum angles from
ground-truths and query sequences and the returned DTW distances are examined.

Comparing Joint Angles

In order to evaluate the Comparing Joint Angles approach, ten single iteration exercise
sequences of a squat exercise will be selected on a random basis. Then the joint angle
values for all prioritised angles of those sequences are retrieved for their turning frame as
determined by the subsequencing procedure described in chapter 3.3. The squats exercise
file specifies the left knee flexion, right knee flexion, left hip flexion and right hip flexion as
prioritised angles. The optimal range for all these angles is specified as 45 to 90 degrees
with a tolerance of 10 degrees. So for this evaluation scenario, the determined result states
shall fit the maximum angle for the turning frame of the sequence.

Table 5.4 shows the results of the evaluation. It can be observed that all 40 result
states have been determined correctly. As the defined tolerance in the quats exercise file is
10, angles from 35 to 100 degrees are considered as in range. Angles below 35 shall lead
to the result state undercut as it is the case for the left hip flexion angle of sequence number
10. Further, all angles greater than 100 degrees correctly resulted in exceeded states as
occurred in the sequences number 1, 4 and 5.

Seq Left Hip Flex Right Hip Flex Left Knee Flex Right Knee Flex Result
Angle State Angle State Angle State Angle State

1 63.5° in_range 60.3° in_range 121.8° exceeded 123.8° exceeded correct
2 49.0° in_range 48.3° in_range 89.3° in_range 90.4° in_range correct
3 48.8° in_range 49.3° in_range 88.1° in_range 88.9° in_range correct
4 65.2° in_range 46.3° in_range 114.3° exceeded 103.5° exceeded correct
5 67.0° in_range 63.8° in_range 121.2° exceeded 119.9° exceeded correct
6 46.9° in_range 44.9° in_range 98.7° in_range 98.7° in_range correct
7 45.4° in_range 44.8° in_range 88.5° in_range 85.5° in_range correct
8 43.0° in_range 36.3° in_range 72.14° in_range 61.14° in_range correct
9 40.2° in_range 40.1° in_range 67.2° in_range 65.8° in_range correct
10 32.2° undercut 36.4° in_range 69.4° in_range 72.6° in_range correct

Table 5.4: Joint angles for prioritised angles of single iteration squat exercise sequences at
the turning frame and the determined result state.
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Quality Ratings from Similarities

To evaluate the exercise execution rating approach described in chapter 3.5.2, the correlation
between two comparison values of a squat exercise ground-truth sequence and 144 squat
exercise query sequences is determined. One of the values is the DTW distance between
the two sequences concerning one prioritised joint angle. The other comparison value is
the absolute difference between the maximum angles of the two sequences with regard to
one prioritised joint angle, which is further simplified as the maximum angle difference.
The result of the evaluation shall show how strongly the 144 distances and turning frame
angle differences correlate to each other. Therefore, the correlation coefficient is determined
for each prioritised angle of the squat exercise, which are the left hip, right hip, left knee
and right knee. A description about prioritised angles is given in chapter 3.1.3.
The correlation between the DTW distance and the maximum angle difference shall show
how meaningful the DTW distance is in a scenario where a physician defines maximum
angle guidelines for a patient. The DTW distance is meaningful if the correlation is
strong as a high violation of a physicians maximum angle guidelines result in a high DTW
distance. In contrast to this, it is meaningless with respect to the described scenario if the
correlation is rather weak. A weak correlation is represented by a correlation coefficient
near zero, a strong positive correlation by a correlation coefficient near one, and a strong
negative correlation by a correlation coefficient near minus one.

The figures 5.13, 5.14, 5.15 and 5.16 display the correlation between maximum angle
differences and DTW distances with respect to a prioritised joint angle. Additionally, a
linear regression graph is shown, which visualises the relationship between both values.
It can be observed, that there is a rather strong positive correlation for all examined joint
angles. The left hip flexion maximum angle differences show the weakest correlation
to the DTW distances represented by a correlation coefficient of 0.866. The left knee
flexion shows the strongest correlation with a correlation coefficient of 0.957. The average
correlation coefficient across all four prioritised body parts of the squat exercise is 0.904
and represents a strong positive correlation.
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5.2 Observations

Figure 5.13: Correlation of the abso-
lute differences between
maximum left knee an-
gles and DTW distances
of a ground-truth squat se-
quence and 144 query squat
sequences

Figure 5.14: Correlation of the abso-
lute differences between
maximum right knee an-
gles and DTW distances
of a ground-truth squat se-
quence and 144 query squat
sequences

Figure 5.15: Correlation of the abso-
lute differences between
maximum left knee an-
gles and DTW distances
of a ground-truth squat se-
quence and 144 query squat
sequences

Figure 5.16: Correlation of the abso-
lute differences between
maximum right knee an-
gles and DTW distances
of a ground-truth squat se-
quence and 144 query squat
sequences
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5 Evaluation

5.3 Conclusion

5.3.1 Subsequencing Motion Sequences

Different parameters for the subsequencing procedure have been tested to find the best
configuration. However, the initial configuration resulted in the best average absolute
distance to the perfect expected iterations to identified iterations ratio of 1.000. The
configuration led to 770 identified iterations compared to 780 expected iterations (98.718%)
resulting in an average absolute distance of 0.069. However, it is important to note that the
average absolute distance and the percentage of identified iterations are only an indicator
of how well the procedure performs. It is still possible that unidentified iterations are
compensated by mistakenly identified iterations.
Apart from that, the results for the overhead press exercise differ greatly from the other
exercises caused by an issue with abduction/adduction angle calculations described in
the last chapter. This leads to the assumption that exercises in which the occurrence
of abduction angles greater than 180 degrees can not be excluded will not deliver the
optimal results using this subsequencing procedure while using clinically meaningful joint
angles.

5.3.2 Matching Motion Sequences

The test results using 634 query sequences of five different exercises shows that squat and
biceps curl exercises are reliably identified by comparing them to the chosen ground-truth
sequences using the DTW algorithm with medical joint angle input. Only two (0.5%) of
these 390 sequences were matched incorrectly. However, the results also show that knee
lift exercises are frequently matched with the ground-truths sequences of biceps curls due
to similar arm movement. 69 (28.5%) of these 242 sequences were matched incorrectly.
The results lead to the conclusion, that exercise executions which differ from the ground-
truth execution of that exercise might more likely be identified incorrectly. Especially if a
body part is not moved at all when it should be or when the pool contains multiple similar
exercises. It is assumed that a test scenario using a bigger pool of exercises including
different variations of those exercises may influence the test results to the worse.
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5.3 Conclusion

5.3.3 Rating Execution of Exercises

The evaluation results for both exercise rating approaches show that both approaches
are suitable to deliver meaningful feedback, which can be further processed in order to
determine whether an exercise is performed correctly or not.
The evaluation of the Comparing Joint Angles method shows, that the method provides
reliable information about whether the reached joint angles lie in a predefined range. Based
on that information, good and bad performances can be determined on a one frame basis
and high-quality feedback with respect to each joint angle can be returned.
The evaluation of the Quality Ratings from Similarities approach shows, that a strong
correlation between maximum angle differences and DTW distances with respect to a
particular joint angle exists. Therefore, the DTW distance is interpreted as a viable indicator
whether joint angles of a ground-truth sequence are met with respect to particular joint
angles. Consequently, in a scenario where a physician guides a patient by stating target
angles for an exercise along with recording a personalised ground-truth sequence in which
those angles are met, the DTW distances of the Quality Ratings from Similarities methods
allow to give feedback about whether the guidelines have been kept.
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6 Conclusion and Outlook

6.1 Conclusion

The main objectives of this thesis have been to find viable solutions (A) to retrieve single
iteration subsequences from repetitive exercise sequences, (B) to match motion sequences
by determining a difference between them and (C) to automatically rate the execution of
sport exercises. Additionally, (D) a 3-D motion sequence dataset of sport exercises should
be created in order to evaluate the developed approaches for A, B and C.
This work contributes useful solutions to all main objectives. Therefore, clinically mean-
ingful joint angles have been calculated as required by the project context in order to
compare these angles to predefined exercise angles which represent an optimal execution.
These joint angles, which were calculated from 3-D motion tracking input, have further
been used as pose describing input data for all other developed approaches.

The first part of this thesis provides information about the main objectives and their
relevance in a medical environment by briefly stating possible scenario in which the
objectives A, B and C could be of high value and how the parts could work together.
Moreover, possible challenges regarding the objectives are mentioned and a brief overview
of the research context and its requirements is given as well as the major structure of this
work is presented.
The second part presents related work and fundamental knowledge regarding the main
objectives and human joint angle calculations, followed by brief discussions about the
suitability of the presented approaches regarding the objectives and requirements of this
thesis.
Continuing with the methodology, the main part of this work, where the approaches to
fulfil the main objectives A, B and C are presented as well as the calculation of joint angles
and defined representations of motion sequences and exercises. Thus, each procedure
is structured into its main parts and explained in detail. It is important to note, that the
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provided solutions, on the one hand, work on their own but on the other hand can not realise
a scenario as stated in the second part of chapter 1.1 and visualised in Figure 1.1 due to the
usage of clinically meaningful joint angles. The problem is, that the postprocessing step
explained in chapter 3.2.3 is required to determine these angles. This postprocessing step
already needs information about the target angles of a particular exercise in order to predict
the most likely type of motion. However, the identification of the performed exercise
represents step (4) in the stated scenario and requires a single iteration sequence, which
should be retrieved in step (3) already. Though, step (3) already requires the resulting
clinically meaningful angles after the mentioned postprocessing step. A possible solution
to this could be the usage of clinically meaningless angles for the subsequencing procedure,
which do not require a postprocessing step. Even though the stated procedure which
connects the singular objectives of this work can not be realised with the presented methods,
each method on its own represents a viable solution to the respective task.
To confirm the viability of each solution, all methods have been evaluated on their own
using a dataset, which has been created in the context of this work and represents the
fourth main contribution (D). The evaluation showed, that each of the developed methods
represents a viable approach to tackle the main objectives of this work. Nevertheless,
some problems and unfavourable circumstances could also be identified. One important
problem has been found by examining the subsequencing results of the overhead press
exercise. During the process, rapid abduction angle changes from near 180 degrees to -180
degrees were notices. This interfered with the subsequencing procedure, which is based
on the identification of minima and maxima in joint angle sequences. Consequently, the
current subsequencing method using clinically meaningful angles is not perfectly suited for
exercises which may consist of abduction or adduction motions that result in angles greater
than 180 degrees. For exercises, which did not include such motions, the method works
very well. This again leads to the assumption, that a clinically meaningless representation
of joint angles may resolve this problem.
Despite that, a potential disadvantage of the approach to match motion sequences has been
assumed. The method is on the one hand very accurate distinguishing motions, which differ
greatly in used body parts but shows weaknesses when comparing rather similar motions
or motions that become similar when performed without motion of particular body parts.
This led to the assumption, that the method is not perfectly viable to identify different
variations of an exercise or reliably distinguish rather similar exercises. As the similarity
of exercises increase in datasets containing more exercises, this could be a problem in
real-world scenarios. However, it is also noticed, that the matching approach may still be
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suited to retrieve a list of the most similar motion sequences from a database containing
any amount of unlabeled motion sequences.
Furthermore, the evaluation of the two exercise rating approaches has shown, that both
approaches are suited to return meaningful feedback regarding all body parts and joint
angles to rate the execution of exercises based on these methods. Nevertheless, the method
that utilises similarities of joint angle sequences seems more promising than the method in
which tracked and predefined joint angles are directly compared. This is mainly due to the
better flexibility of usable input data and easier potential customisability. On the one hand,
the direct comparison method requires the determination of clinically meaningful joint
angles in order to compare those to predefined target angles of exercises. On the other hand,
the similarity does not necessarily require clinically meaningful angles but could potentially
work with clinically meaningless angles or other types of input. Also, each variation of
an exercise will require a separate exercise file for the comparison method, whereas the
similarity method requires a ground-truth sequence as optimal execution reference. Instead
of defining exercise files that fit the personal needs of each patient, the recording of the
ground-truth performed by the physician is considered a better workflow. However, the
returned feedback from the similarity method is not as suited as the feedback from the
comparison method to identify injurious exercise executions caused by only slight angle
differences to the correct execution. But still, the similarity methods feedback is viable
as it enables to notify a user about single body parts which were moved differently to the
ground-truth considering the whole motion, whereas the comparison method only provides
information regarding single frames without taking the rest of the motion into consideration.

In conclusion, this work provides viable approaches to identify subsequences of sin-
gle iterations from sequences of repeated exercises, to match motion sequences based on
their similarity and to produce feedback for performed sport exercises in order to rate the
performance. Nevertheless, is has been observed, that clinically meaningful angles may
not always represent the one optimal pose describing input as they are hard to reliably
determine and prone to anomalies for certain motions, those of the shoulders due to their
high range of motion.
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6.2 Outlook

On the whole, this work provides viable approaches to deal with motion analysis tasks
like subsequencing of repetitive motions, motion sequence matching and rating of sport
exercise motion sequences. Even though, there is room for improvements regarding the
developed methods as well as the used pose representation input data.
As mentioned in the conclusion of this work, clinically meaningful joint angles are hard
to reliably determine and are still prone to anomalies which consequently affect all the
developed methods. An interesting approach to further improve the developed methods
could be to use a different joint angle representation, which is not necessarily clinically
meaningful, like for example Quaternions.
Other than that, the developed approaches may still have room for various improvements,
especially in terms of robustness and performance optimisation, which could be examined
for each method respectively. Despite that, each method may be further optimised
methodically, by carefully examining their advantages and disadvantages in various usage
scenarios. For example, the subsequencing approach could be examined and optimised
when used to retrieve subsequences from motion sequence streams as the algorithm is
potentially suited to perform this task. Further, the approaches which are based on Dynamic
Time Warping distances may be optimised by examining the addition of weight scales
for specific body parts, which reflect the importance of particular body parts for certain
motions.
Apart from optimising the particular methods of this work, more complex software could
be developed based on the developed approaches. As the research context already indicates,
the most obvious usage may be software that assists trainees or patients while performing
sport exercises. But other than that, the methods may be suited to put them into other
contexts than only sport exercises as the subsequencing, matching and one of the rating
methods do not necessarily only work for sports exercises but possibly for various kinds of
motions.
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